Attachment F

Technical Reference Manual

Hawaii Energy - Technical Reference Manual No. 2012 Program Year 4 July 1, 2012 to June 30, 2013

Hawaii Energy Efficiency Program

Program Year 4 July 2012 through June 2013

Technical Reference Manual (TRM)

No. 2012

Measure Savings Calculations

Program Year 4 July 1, 2012 to June 30, 2013

Table of Contents

1	INTRODUCTION		4
2	GROSS CUSTOMER-TO-NET PROGRAM SAVINGS CALCULATION		6
3	INTERACTIVE EFFECTS		
4	PERSISTENCE		
5	GLOSSARY		10
6	LOAD SHAPES AND DEMAND COINCIDENCE FACTORS	,	11
7	TOTAL RESOURCE BENEFITS – AVOIDED COSTS AND MEASURE LIFE		12
	Effective Useful Life (EUL): Table 7.3		14
8	(REEM) RESIDENTIAL ENERGY EFFICIENCY MEASURES	••••••••••••••••••	17
	8.1 HIGH EFFICIENCY WATER HEATING		
	8.1.1 Solar Water Heater		17
	8.1.2 Solar Water Heating Loan Interest Buydown (Hot Water Cool Rates)		
	8.1.3 Solar Water Heater Energy Hero Gift Packs		
	8.1.4 Heat Pump Water Heaters		28
	8.2 HIGH EFFICIENCY LIGHTING		
	8.2.1 Compact Fluorescent Lamp (CFL)		
	8.2.2 Light Emitting Diode (LED)		35
	8.3 HIGH EFFICIENCY AIR CONDITIONING		20
	8.3.2 Ceiling Fans		
	8.3.3 Solar Attic Fans		
	8.3.4 Whole House Fans		
	8.4 HIGH EFFICIENCY APPLIANCES		
	8.4.1 Energy Star Clothes Washer & Refrigerator		49
	8.4.2 Pool VFD Controller Pumps		55
	8.5 ENERGY AWARENESS, MEASUREMENT AND CONTROL SYSTEMS		
	8.5.1 Room Occupancy Sensors		
	8.5.2 Peer Group Comparison		
	8.5.3 Whole House Energy Metering		62
9	(CESH) CUSTOM ENERGY SOLUTIONS FOR THE HOME	,	66
	9.1 TARGET COST REQUEST FOR PROPOSALS		
	9.1.1 Custom Packaged Proposals		66
10) (RESM) RESIDENTIAL DIRECT INSTALLATION		67
- 0		67	
	10.1 RESIDENTIAL DIRECT INSTALLATION		67
	10.1.1 Real Time Metering		0/
	10.2 RESIDENTIAL DESIGN AND AUDITS		68
	10.2.1 Egittency Insue (New Home Construction Incentive) 10.2.2 Hawaii Energy Hero Audits		
	10.3 RESIDENTIAL SYSTEM TUNE-UPS		
	10.3.1 Central AC Tune Up		72
	10.3.2 Solar Water Heating Tune-up		
11	(RHTR) RESIDENTIAL HARD TO REACH		78
	2	Atta	achment

Program Year 4 July 1, 2012 to June 30, 2013

11.1 Ene	RGY EFFICIENCY EQUIPMENT GRANTS	78	
11.1.1	Solar Inspections (Weatherization Assistance Program)		78
11.1.2	Energy Hero Gift Packs		
11.1.3	CFL Exchange		
11.1.4	Hawaii Energy Hero Audits		
	IDLORD / TENANT, AOAO MEASURES		
11.2.1	Hawaii Energy Hero Landlord Program		
12 (BEE	M) BUSINESS ENERGY EFFICIENCY MEASURES		
	HEFFICIENCY LIGHTING		
12.1.1	Compact Fluorescent Lighting (CFL)		94
12.1.1	T12 to standard T8 (Magnetic Ballast)		
12.1.2	T12 to standard 18 (Magnetic Banasi) T12/T8 to T8 Low Wattage		
12.1.3	Delamping		
12.1.4	1 0		
	Delamping with Reflectors.		
12.1.6	LED Refrigerated Case Lighting		
12.1.7			
12.1.8	LED Exit Signs		
12.1.10	HID Pulse Start Metal Halide		
12.1.11	Sensors		
12.1.12	Stairwell Bi-Level Dimming Fluorescent		
12.1.13	Daylighting		120
	H EFFICIENCY HVAC		
12.2.1	Chiller		
12.2.2	VFD – Chilled Water/Condenser Water		
12.2.3	<i>VFD</i> – <i>AHU</i>		
12.2.4	Garage Demand Ventilation Control		
12.2.5	Package Unit AC		
12.2.6	Inverter Variable Refrigerant Flow (VRF) Split Air Conditioning Systems	•••••	132
12.3 Hig	H EFFICIENCY WATER HEATING		
12.3.1	Commercial Solar Water Heating		
12.3.2	Heat Pump		137
12.4 Hig	H EFFICIENCY WATER PUMPING		
12.4.1	VFD Domestic Water Booster Packages		
12.4.2	VFD Pool Pump Packages		141
12.5 Hig	H EFFICIENCY MOTORS	143	
12.5.1	CEE Listed Premium Efficiency Motors		143
12.5.2	ECM Evaporator Fan Motors for Walk-in Coolers and Freezers		146
12.5.3	EC Motors – Fan Coil Units		149
12.6 Con	MMERCIAL INDUSTRIAL PROCESSES	152	
12.6.1	Waste Water Process Improvements		152
12.6.2	Air Compressor Technologies and Operations		153
12.6.3	Demand Control Kitchen Ventilation (DCKV)		154
12.6.4	Low Flow Spray Nozzles for Food Service (Retrofit)		
12.6.5	ENERGY STAR Commercial Kitchen Equipment - Ice Makers		
12.6.6	ENERGY STAR Commercial Kitchen Equipment - Electric Steam Cooker		
12.6.7	ENERGY STAR Commercial Kitchen Equipment - Griddle		
12.6.8	ENERGY STAR Commercial Kitchen Equipment - Fryer		
12.6.9	ENERGY STAR Commercial Kitchen Equipment - Hot Food Holding Cabinet		
12.6.10	ENERGY STAR Commercial Kitchen Equipment -Combination Ovens		
12.6.11	ENERGY STAR Commercial Kitchen Equipment - Convection Ovens		
12.6.12	ENERGY STAR Commercial Kitchen Equipment - Solid Door Refrigerators & Freez		
	LDING ENVELOPE IMPROVEMENTS		
12.7 DOI	Window Tinting		181
12.7.1	Cool Roof Technologies		
	ERGY STAR BUSINESS EQUIPMENT		105
12.8 ENE 12.8.1	Refrigerators w/Recycling		185
12.0.1			
	3	AI	tachment F

Program Year 4 July 1, 2012 to June 30, 2013

	ERGY AWARENESS, MEASUREMENT AND CONTROL SYSTEMS		
12.9.1	Condominium Submetering Pilot		190
12.9.2	Small Business Submetering		
12.9.3	Vending Misers		198
13 (CBE	EM) CUSTOM BUSINESS ENERGY EFFICIENCY MEASURES		
13.1 Cu	STOMIZED PROJECT MEASURES		
13.1.1	Customized Project Measures		200
14 (BES	M) BUSINESS ENERGY SERVICES AND MAINTENANCE	202	
14.1 Bu	SINESS DIRECT INSTALLATION	202	
14.1.1	Small Business Direct Lighting Retrofits		202
14.2 Bu	SINESS DESIGN, AUDITS AND COMMISSIONING		
14.2.1	Central Plant Optimization Competition Program		205
14.2.3	Cooling Tower Optimization		209
14.2.4	Decision Maker – Real Time Submetering		210
14.2.5	Energy Study		211
14.2.6	Design Assistance		213
14.2.7	Energy Project Catalyst		
15 (BH7	R) BUSINESS HARD TO REACH	216	
15.1 En	ERGY EFFICIENCY EQUIPMENT GRANTS		
15.1.1	SBDI - Demand Control Kitchen Ventilation (DCKV)		216
15.1.2	Small Business Direct Installation – Restaurant Lighting		219
15.2 LA	NDLORD, TENANT, AOAO MEASURES	222	
15.2.1	Energy Hero Landlord		222
16 ADD	ENDUM		
16.1 Re	SIDENTIAL	223	
16.2 Co	MMERCIAL	223	
16.2.1	LED Product Customized Process		223

1 Introduction

METHODS AND ASSUMPTIONS

This reference manual provides methods, formulas and default assumptions for estimating energy and peak impacts from measures and projects that receive cash incentives from the Hawaii Energy Efficiency Program.

The reference manual is organized by program, end use and measure. Each section provides mathematical equations for determining savings (algorithms), as well as default assumptions for all equation parameters that are not based on site-specific information. In addition, any descriptions of calculation methods or baselines are provided, as appropriate.

The parameters for calculating savings are listed in the same order for each measure. Algorithms are provided for estimating annual energy and demand impacts.

Data assumptions are based on Hawaii specific data, where available. Where Hawaii data was not available, data from neighboring regions is used where available and in some cases, engineering judgment is used.

Data sources used, in the general order of preference, included, but were not necessarily limited to the following:

Program Year 4 July 1, 2012 to June 30, 2013

- Energy and Peak Demand Impact Evaluation Report of the 2005-2007 Demand Management Programs – KEMA
- HECO IRP-4: Energy Efficiency Potential Study (HECO DSM Docket)
- 2004-2005 Database for Energy Efficiency Resources (CA DEER database)
- 2007-2008 Database for Energy Efficiency Resources (CA DEER database) Update
- Other EE Program Design Information (e.g. Efficiency Maine, Focus on Energy, etc.)
- SAIC Staff expertise and engineering judgment
- Evergreen TRM Review 2/23/12

Hawaii Energy - Technical Reference Manual No. 2012 Program Year 4 July 1, 2012 to June 30, 2013

2 Gross Customer-to-Net Program Savings Calculation

The algorithms shown with each measure calculate gross customer electric savings without counting the effects of line losses from the generator to the customer or free ridership.

The formulae for converting gross customer-level savings to net generation-level savings are as follows:

Net Program kWh = Gross Customer Level $\Delta kWh \times (1 + SLF) \times RR$

Net Program kW = Gross Customer Level $\Delta kW \times (1 + SLF) \times RR$

Where:

Net kWh = kWh energy savings at generation-level, net of free riders and system losses Net kW = kWh energy savings at generation-level, net of free riders and system losses

Gross Cust. $\Delta kWh =$ Gross customer level annual kWh savings for the measure Gross Cust. $\Delta kW =$ Gross customer level connected load kW savings for the measure

SLF = System Loss Factor

RR = Realization Rate that includes Free Riders and Engineering Verification

Hawaii Energy PY2009 Portfolio Energy (kWh) Reduction Impacts by Level						
	Gross Customer Level Savings	System Loss Factor (SLF)	Gross System Level Savings	Realization Rate (RR)	Net Program Level Savings (Net kWh)	
Oahu	110,545,694	11.17%	122,893,648	73%	89,712,363	
Hawaii	12,590,195	9.00%	13,723,313	73%	10,018,018	
Maui	9,182,496	9.96%	10,097,072	73%	7,370,863	
Lanai	61,712	9.96%	67,858	73%	49,537	
Molokai	85,269	9.96%	93,762	73%	68,447	
Total	132,465,366		146,875,654		107,219,227	
% of Customer Level Savings			111%		81%	

SLF – System Loss Factor

The system loss factors were provided by HECO, MECO and HELCO. The do not vary by measure, but by island, and are in the following Table 1.1:

Table 2.1

County Customer to System Loss Factor			
Oahu	Maui	Hawaii	
11.17%	9.96%	9.00%	

Program Year 4 July 1, 2012 to June 30, 2013

RR - Realization Rate

The Realization Rate used was estimated using the following information from the HECO 2008 A&S report:

Table 2.2

	Realization Rate			
Program	Energy	Demand	Net System Level Energy Savings 2008	Gross System Level Energy Savings 2008
I. CIEE	0.6530	0.6640	45,798,527	70,135,569
2. CINC	0.5960	0.6100	17,469,147	29,310,648
3. CICR	0.7590	0.7550	28,749,233	37,877,777
4. ESH	0.8500	0.8500	32,203,749	37,886,763
5. REVVH	0.7290	0.7310	8,237,872	11,300,236
6. RNC	0.8410	0.8850	8,267,217	9,830,222
7. RLI	1.0000	1.0000	7,899,869	7,899,869
TOTAL			148,625,614	204,241,087

The total Net Energy Savings divided by the total Gross Energy Savings for 2008 is 73%.

Therefore, the overall realization rate for HECO was 0.73 and Table 1.3 reflects the use of this for the other islands.

Table 2.3

County Customer Realization Rate				
Oahu	Maui	Hawaii		
73%	73%	73%		

Program Year 4 July 1, 2012 to June 30, 2013

3 Interactive Effects

The TRM provides specific savings algorithms for many prescriptive measures. When a customer installs a prescriptive measure, the savings are determined according to these algorithms. In some cases these algorithms include the effects of interactions with other measures or end.

For "custom" measures, Hawaii Energy performs site-specific customized calculations. In this case, Hawaii Energy takes into account interactions between measures (e.g., individual savings from installation of window film and replacement of a chiller are not additive because the first measure reduces the cooling load met by the second measure).

Hawaii Energy will calculate total savings for the package of custom measures being installed, considering interactive effects, either as a single package or in rank order of measures as described below.

If a project includes both prescriptive and custom measures, the prescriptive measures will be calculated in the normal manner. However, the prescriptive measures will be assumed to be installed prior to determining the impacts for the custom measures.

For commercial lighting measures, the following factors are applied for facilities with air conditioning.

Building Type	Expected Level of Similarity	Energy Factor	Demand Factor
All Commercial	Low	1.056	1.075
Misc Commercial	Low	1.056	1.075
Cold Storage	Very High	1.423	1.22
Education	Low	1.061	1.039
Grocery	Low	1.043	1.114
Health	High	1.122	1.233
Hotel/Motel	High	1.115	1.236
Industrial	Low	1.043	1.074
Office	Low	1.068	1.102
Restaurant	Low	1.051	1.073
Retail	Low	1.054	1.085
Warehouse	Low	1.019	1.053

Table 3

Program Year 4 July 1, 2012 to June 30, 2013

4 Persistence

Persistence factors may be used to reduce lifetime measure savings in recognition that initial engineering estimates of annual savings may not persist long term.

This might be because a measure is removed or stops functioning prior to the end of its normal engineering lifetime, because it is not properly maintained, it is overridden, it goes out of calibration (controls only), or for some other reason.

Some of the measure algorithm may contain an entry for persistence factor. The default value if none is indicated is 1.00 (100%). A value lower than 1.00 will result in a downward adjustment of lifetime savings and total resource benefits.

For any measure with a persistence value less than 1.00, the normal measure life ("Engineering Measure Life") will be reduced to arrive at an "Effective Useful Life" for the purposes of estimating the TRB of a measure or program.

Program Year 4 July 1, 2012 to June 30, 2013

5 Glossary

The following glossary provides definitions for necessary assumptions needed to calculate measure savings.

<u>Attribution Factor (AF)</u>: The Attribution Factor is the amount of savings attributable to the program impact. It is calculated by subtracting from one the % free ridership.

<u>Baseline Efficiency (η_{base})</u>: The assumed standard efficiency of equipment, absent an Hawaii Energy program.

<u>Coincidence Factor (CF)</u>: Coincidence factors represent the fraction of connected load expected to be "on" and using electricity coincident with the system peak period.

<u>Connected Load</u>: The maximum wattage of the equipment, under normal operating conditions, when the equipment is "on".

<u>Freeridership (FR)</u>: A program's *free ridership rate* is the percentage of program participants deemed to be free riders. A *free rider* refers to a customer who received an incentive through an energy efficiency program who would have installed the same or a smaller quantity of the same high efficiency measure on their own within one year if the program had not been offered.

<u>Full Load Hours (FLH):</u> The equivalent hours that equipment would need to operate at its peak capacity in order to consume its estimated annual kWh consumption (annual kWh/connected kW).

<u>High Efficiency (n_{effic})</u>: The efficiency of the energy-saving equipment installed as a result of an efficiency program.

<u>Incremental Cost</u>: The cost difference between the installed cost of the high efficiency measure and the standard efficiency measure.

<u>Lifetimes</u>: The number of years (or hours) that the new high efficiency equipment is expected to function. These are generally based on engineering lives, but sometimes adjusted based on expectations about frequency of remodeling or demolition.

<u>System Loss Factor (SLF)</u>: The marginal electricity losses from the generator to the customer meter – expressed as a percent of meter-level savings. The Energy Line Loss Factors vary by period. The Peak Line Loss Factors reflect losses at the time of system peak, and are shown for two seasons of the year (winter and summer). Line loss factors are the same for all measures.

Load Factor (LF): The fraction of full load (wattage) for which the equipment is typically run.

Operating Hours (HOURS): The annual hours that equipment is expected to operate.

Persistence (PF): The fraction of gross measure savings obtained over the measure life.

<u>Realization Rate (RR)</u>: The fraction of gross measure savings realized by the program impact. It includes the gross verification adjustment and free ridership or attribution adjustment.

<u>Spillover (SPL)</u>: Spillover refers to energy-efficient equipment installed in any facility in the program service area due to program influences, but without any financial or technical assistance from the Program. It is expressed as a percent or fraction of the gross savings attributable to program participation.

<u>Total Resource Benefits (TRB)</u>: The present value of benefits from the program savings resulting from avoided energy and capacity costs for the utility and their ratepayers.

6 Load shapes and Demand Coincidence Factors

Load shapes for different types of equipment or systems were not needed because the savings values estimated in the KEMA 2008 impact evaluation already accounted for these load shapes. The coincidence factors were developed based on the calculated full load demand reduction and the KEMA values for each building type. The resulting coincidence factors were evaluated for reasonableness depending on the system type and the building type.

7 Total Resource Benefits – Avoided Costs and Measure Life

HECO provided avoided energy and capacity costs for future years shown in the table below:

1 able 7.1		
Year	\$/MWh	\$/kW
2006	\$109.62	\$180.20
2007	\$107.16	\$181.14
2008	\$102.19	\$181.14
2009	\$106.89	\$181.14
2010	\$98.90	\$0.00
2011	\$100.41	\$0.00
2012	\$104.04	\$0.00
2013	\$103.69	\$0.00
2014	\$108.86	\$0.00
2015	(\$139.65)	\$1,530.33
2016	(\$132.67)	\$1,704.00
2017	(\$118.95)	\$1,537.80
2018	(\$115.35)	\$1,412.69
2019	(\$109.01)	\$1,304.38
2020	(\$104.57)	\$1,207.27
2021	(\$100.02)	\$1,149.38
2022	(\$109.30)	\$1,112.04
2023	(\$111.41)	\$1,076.56
2024	\$137.80	(\$411.76)
2025	\$144.46	(\$744.16)

Table 7.1

The avoided cost values for energy and capacity that was originally provided by HECO was deemed inappropriate to use for reasons that included a negative avoided cost value for energy in the year 2015 to 2023 and no capacity costs for years 2010 to 2014. Therefore, the avoided cost used for the program was estimated using an extrapolation of the HECO provided avoided energy in the first few years of data for energy and the capacity costs leveled over 20 years. The following table was developed from this extrapolation.

Program Year 4 July 1, 2012 to June 30, 2013

Table 7.2

Year	\$/MWh	\$/kW
2006	109.62	180.20
2007	107.16	181.14
2008	102.19	181.14
2009	106.89	181.14
2010	98.90	279.79
2011	100.41	305.64
2012	104.04	338.65
2013	103.69	353.19
2014	108.86	370.59
2015	112.36	382.51
2016	113.45	386.22
2017	113.90	387.74
2018	114.30	389.12
2019	115.13	391.92
2020	114.76	390.68
2021	115.92	394.63
2022	117.01	398.34
2023	116.75	397.44
2024	117.91	401.41
2025	119.18	405.71

This table was deemed a good estimate of actual avoided energy and capacity costs as it was more in line with the avoided costs used in many other programs. Therefore, these avoided costs were used to calculate the Total Resource Benefits.

Program Year 4 July 1, 2012 to June 30, 2013

Effective Useful Life (EUL): Table 7.3

Version Date & Revision History Draft date: February 24, 2010 Effective date: July 1, 2010 End date: TBD

Referenced Documents: Econorthwest TRM Review – 6/23/10 DEER The Database for Energy Efficient Resources

TRM Review Actions:

 6/23/10 Rec. – Adopt DEER values in those cases where there is a greater than 20 percent difference between DEER and current TRM. – Adopted

Major Changes:

Hawaii Energy

 Hawaii Energy will adopt DEER EUI values across the board and will follow DEER changes as they are updated unless obvious differences for Hawaii applications are identified.

The measure Effective Useful Life estimated for each measure is shown in the following table:

Program Year 4 July 1, 2012 to June 30, 2013

Table 7.3

PY12					
Residential (R) Business (B)	Measure Type	Description	DEER Effectve Useful Life (EUL)		
R	Water Heating	Solar Water Heating	20		
R		Heat Pumps	10		
R	Lighting	CFL	6		
R		LED	15		
R	Air Conditioning	VRF Split	15		
R		Ceiling Fans	5		
R		Solar Attic Fans	20		
R		Whole House Fans	20		
R	Appliances	Refrigerator (<\$600)	14		
R		Refrigerator w/Recycling	14		
R		Garage Refrigerator/Freezer Bounty	14		
R		Clothes Washer (Tier II/III)	11		
R		Pool VFD Controller Pumps	10		
R	Control Systems	Room Occupancy Sensors & Timers	8		
R		Peer Group Comparison	1		
R		Whole House Energy Metering	4		
R	Custom	Custom Packaged Proposals	5		
R	Direct Install	твр	7		
R	Design and Audits	Efficiency Inside	15		
	Ŭ	Hawaii Energy Hero Audits	1		
R	Tune Ups	Central AC Tune Up	1		
		Solar Water Heater Tune Up	5		
R	Hard to Reach Grants		5		
R		Solar Water Heater	20		
R		Hawaii Energy Hero Gift Packs	5		
R		CFL Exchange	6		
R	Landlord Tennant	Hawaii Energy Hero Landlord Program	15		
		Custom SWH Proposals	20		
В	Lighting	CFL	3		
		CFL - Military Homes	3		
В		T12 to T8 Standard (2/3/8)	14		
В		T12 to T8 Low Wattage	14		
В		T8 to T8 Low Wattage	14		
B		Delamp	14		
В		Delamp w/Reflector	14		
В		LED Refrigerator Case Lighting	15		
В		ENERGY STAR LED Non-Dimmable	15		
B		ENERGY STAR LED Dimmable w/Controls	15		
B		ENERGY STAR LED Diminable W/Controls	15		
В		ENERGY STAR LED Dimmable A19	15		
B		LED Exit Signs	15		
B		HID Pulse Start	10		
B		Sensors	8		
B		Stairwell Bi-Level Dimming Fluorescent	14		
B			20		
ø		Daylighting	20		

Program Year 4 July 1, 2012 to June 30, 2013

Residential (R) Business (B)	Measure Type	Description	DEER Effectve Useful Life
Busiliess (B)			(EUL)
В	HVAC	Chillers	20
В		VFD - Chilled Water/Condenser Water	15
В		VFD - AHU	15
В		Garage Active Ventilation Control	8
В		Package Units	15
В		VFR Split System - Existing	15
В		VFR Split System - New Construction	15
В	Water Heating	Solar Water Heating - Electric Resistance	15
В		Solar Water Heating - Heat Pump	15
В		Heat Pump - conversion - Electric Resistance	10
В		Heat Pump Upgrade	10
В	Water Pumping	VFD Dom Water Booster Packages	15
В		VFD Pool Pump	15
В	Motors	CEE Tier 1 + Premium Efficiency Motors	15
В		ECM w/Controller - evap fan motors	15
В		ECM - Fan Coil Fans	15
В	Industrial Process	Waste Water Processes	15
		Compressed Air	10
		Kitchen Exhaust Hood Demand Ventilation	15
В		ENERGY STAR Commercial Kitchen Equipment	10
В	Building Envelope	Window Tinting	10
В		Cool Roof	10
В	Business Equipment	ENERGY STAR Refrigerator w/Recycling	14
В	Control Systems	Condominium submetering	8
В		Small Business submetering	8
В	Customized	Custom <= 5 years	5
В		Custom > 5 years	12
В		Custom Carryover	12
В	Direct Install	SBDIL - Lighting	14
В	Design and Audits	Central Plant Performance Competition	5
В		Cooling Tower Optimization	1
В		Decision Maker - Real time submeters	1
В		Energy Study Implementation - 100%	N/A
В		Energy Study Assistance - 50%	N/A
В		Design Assistance - 50%	N/A
В		Energy Project Catalyst	7
В	Grants	Water cooler timer	5
В	Restaurant	SBDI - Kitchen Exhaust Hood Demand Ventilation	15
В		SBDI - Restaruant Lighting	14
В	Landlord Tennant	Energy Hero Landlord	7

Hawaii Energy - Technical Reference Manual No. 2012 Program Year 4 July 1, 2012 to June 30, 2013

8 (REEM) Residential Energy Efficiency Measures

8.1 High Efficiency Water Heating

8.1.1 Solar Water Heater

Version Date & Revision History Draft date: February 24, 2010 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Energy and Peak Demand Impact Evaluation Report of the 2005-2007 Demand Management Programs – (KEMA 2005-07)
- Econorthwest TRM Review 6/23/10
- Evergreen TRM Review 2/23/12

TRM Review Actions:

- 6/23/10 Rec. # 6 For PY 2010, adjust claimed demand savings based on participant data from all service territories covered. Adjust Demand Savings based on participant data weighted average of KEMA results across all counties. Change from 0.50 to 0.46 kW. non-military – Adopted and incorporated into PY2010-1 TRM.
- 6/23/10 Rec. # 7 For PY 2010, include a discussion of shell losses in the savings analysis and supporting documentation. Discussion included in PY2010-1 TRM.
- 10/5/11 Currently Under Review.

Major Changes:

- Eliminated Military figure as no foreseeable military retrofit applications will be received.
- Demand change to weighted average from KEMA 2008. 0.46 kW
- Changed individual water usage from 13.3035 to 13.3

Measure Description:

Replacement of Electric Resistance Water Heater with a Solar Water Heater designed for a 90% Solar Fraction. The new Solar Water Heating systems most often include an upgrade of the hot water storage tank sized at 80 or 120 gallons.

Systems must comply with Hawaii Energy Solar Standards and Specifications which call out:

- Panel Ratings
- System Sizing
- Installation orientation de-rating factors
- Hardware and mounting systems

Shell Losses:

The increase in size from a 40 or 60 gallon to an 80 or 120 gallon standard electric resistance water heater would in and of itself increase the "shell" losses of the system. These shell losses are the result of a larger surface area exposing the warm water to the cooler environment and thus more heat lost to the environment through conduction through the tank. Engineering calculations by Econorthwest puts this at a 1% increase in losses. This is further reduced by 90% as the solar water system provides that fraction of the annual water heating requirements.

Program Year 4 July 1, 2012 to June 30, 2013

Baseline Efficiencies:

Baseline usage is a 0.9 COP Electric Resistance Water Heater. The baseline water heater energy consumption is by a single 4.0kW electric resistance element that is controlled thermostatically on/off controller based of tank finish temperature set point. The tank standby loss differences between baseline and high efficiency case are assumed to be negligible.

Demand Baseline has been determined by field measurements by KEMA 2005-07 report. The energy baseline also comes from the KEMA 2005-07 report and is supported by engineering calculations shown in this TRM.

Building Types	Demand Baseline(kW)	Energy Baseline (kWh)
Residential	0.57	2,733

High Efficiency:

Solar Water Heater designed for a 90% Solar Fraction. The Solar Systems use solar thermal energy to heat the water 90% of the time and continue to utilize electricity to operate the circulation pump and provide heating through a 4.0 kW electric resistance element when needed.

Solar Contractors do not favor Photo-Voltaic powered DC circulation pumps as they have proven less reliable in the field than an AC powered circulation pump.

The electric resistance elements in the high efficiency case do not have load control timers on them.

The energy is the design energy of a 90% solar fraction system with circulation pump usage as metered by KEMA 2008.

The on peak demand is the metered demand found by KEMA 2008.

Building Types	Demand High Efficiency (kW)	Energy High Efficiency (kWh)	Circ. Pump %
Residential	0.07	379	28%

Energy Savings:

Solar Water Heater Gross Savings before operational adjustments:

Building Types	Demand Savings (kW)	Energy Savings (kWh)
Residential	0.46	2,354

Operational Factor	Adjustment Factor
Solar Fraction Performance (sfp)	0.94
Persistence Factor (pf)	0.93
Demand Coincidence Factor (cf)	1.0

Solar Water Heater Net Savings after operational adjustments:

Building Types	Demand Savings (kW)	Energy Savings (kWh)
Residential	0.46	2,065

Savings Algorithms

Hawaii Energy - Technical Reference Manual No. 2012

Program Year 4 July 1, 2012 to June 30, 2013

Energy Usage per Year at the Meter 2,732 kWh / Year	
Household Hot Water Usage50.141 Gallons per DMass of Water Conversion8.34 lbs/galFinish Temperature of Water Initial Temperature of Water Temperature Rise130 deg. F FinishFinish Temperature of Water Temperature Rise25 deg. F TemperEnergy tor Day (BTU) Needed in Tank23,000 BTU/Jeg. F/Energy per Day (BTU) Needed in Tank23,000 BTU/DayEnergy twh)6.7 kWh / BUEnergy twh) per Month205 kWh / MonthDays per Year2,459 kWh / YearElec. Res. Water Heater Efficiency2,352 kWh / YearBase SERWH Energy Usage per Year at the Meter2,732 kWh / YearDesign Annual Solar Fraction90% Water HeatedEnergy Usage per Year at the Meter2,732 kWh / YearCirculation Pump Energy0.082 kWPump Energy Used at Meter273 kWh / YearPump Energy Used per Year106 kWh / YearBase SERWH Energy Usage per Year at the Meter2,732 kWh / YearDesign Solar System Energy Usage379 kWh / YearBase SERWH Energy Usage per Year at the Meter2,732 kWh / YearDesign Solar System Energy Savings2,353 kWh / YearDesign Solar System Energy Savings2,353 kWh / YearDesign Solar System Energy Savings2,353 kWh / Year <th></th>	
Mass of Water Conversion 8.34 lbs/gal Finish Temperature of Water Initial Temperature of Water Temperature Rise 130 deg. F Finishi 75 deg. F Inishi Temperature Rise Energy to Raise Water Temp 1.0 BTU / deg. F / Energy per Day (BTU) Needed in Tank Energy per Day (BTU) Needed in Tank 23,000 BTU/Day Energy per Day (BTU) Needed in Tank 23,000 BTU/Day Energy per Day (BTU) Needed in Tank 23,000 BTU/Day Energy per Day (BTU) Needed in Tank 23,000 BTU/Day Energy to Roth \$ 3,412 kWh / BTU Days per Month \$ 30.4 Days per Month Days per Month \$ 20.5 kWh / Month Days per Month \$ 2,459 kWh / Year Energy Usage per Year \$ 0.90 COP Base SERWH Energy Usage per Year at the Meter 2,732 kWh / Year Design Annual Solar Fraction 90% Water Heated Days per Yoar \$ 0.082 kW Pump Hours of Operation \$ 1,292 Pump Energy Usage per Year \$ 1,292 Base Vup Element Energy Usage \$ 773 kWh / Year Design Solar System Energy Usage \$ 779 kWh / Year Base SERWH Energy Usage per Year at the Meter \$ 2,732 kWh / Year Design Solar System Energy Usage \$ 379 kWh / Year Design Solar System Energy Savings \$ 2,353 kWh / Year Design Solar System Energy Savings <th>KEMA 2008</th>	KEMA 2008
Finish Temperature of Water Temperature of Water Temperature Rise130 deg. F Finish Tomperature RiseEnergy to Raise Water Temp1.0 BTU/deg. F/Energy to Raise Water Temp2.3000 BTU/DayEnergy to Raise Water Temp2.3000 BTU/DayEnergy to KWh Deeded in Tank23.000BTU to Why FurDays per Monthx3.65Days per Month2.732 kWh / YearDesign Annual Solar Fraction90% Water Heater2.732 kWh / YearDesign Annual Solar Fraction90% Water Heater2.732 kWh / YearCirculation Pump Energy Used at Meter2.732 kWh / YearDasign Solar System Energy Usage3.79Base SERWH Energy Usage per Year2.732 kWh / Year <t< td=""><td>ау</td></t<>	ау
Initial Temperature of Water Temperature Rise - 75 deg. F Initial S5 Energy to Raise Water Temp 1.0 BTU / deg. F / Energy per Day (BTU) Needed in Tank 23,000 BTU/Day Energy per Day (BTU) Needed in Tank 23,000 BTU/Day STU to KWh Energy Conversion ÷ 3.412 KWh / BTU Energy kWh) per Month × 30.4 Days per Month Days per Year - 365 Days per Year Energy (KWh) per Month × 365 Days per Year Energy (Wh) Needed in Tank to Heat Water per Year 2.459 kWh / Year Elec. Res. Water Heater Efficiency × 365 Days per Year Design Annual Solar Fraction 90% Water Heated 2.732 kWh / Year Design Annual Solar Fraction 90% Water Heated 2.732 kWh / Year Dump Hours of Operation × 1.092 Hours per Year Dump Energy used per Year 0.082 kW × 1.292 Base SERWH Energy Usage per Year at the Meter 2.732 kWh / Year Dump Energy used per Year 106 kWh / Year Dass Gra System Energy Usage 379 kWh / Year Design Solar System Energy Usage 2.353 kWh / Year Design Solar System Energy Usage 2	
Temperature Rise55 deg. F TempeEnergy to Raise Water Temp1.0 BTU / deg. F /Energy per Day (BTU) Needed in Tank23,000 BTU/DaySinergy per Day (BTU) Needed in Tank23,000 BTU/DaySinergy per Day (BTU) Needed in Tank23,000 BTU/DaySinergy per Day (kWh)6.7 kWh / DaySays per Month3.412 kWh / BTUSays per Month3.412 kWh / MonthDays per Month205 kWh / MonthSays per Year3.65 Days per YearEnergy (kWh) Needed in Tank to Heat Water per Year2.459 kWh / YearElec. Res. Water Heater Efficiency3.362 Days per YearBase SERWH Energy Usage per Year at the Meter2.732 kWh / YearDesign Annual Solar Fraction90% Water HeatedBack Up Element Energy Used at Meter2.732 kWh / YearCirculation Pump Energy0.082 kWPump Energy used per Year0.082 kWPump Energy used per Year106 kWh / YearDasign Solar System Energy Usage379 kWh / YearDesign Solar System Energy Usage379 kWh / YearDesign Solar System Energy Savings2.353 kWh / YearDesign Solar System Energ	
Energy to Raise Water Temp1.0 BTU / deg. F / 23,000 BTU / DayEnergy per Day (BTU) Needed in Tank23,000 BTU / DayEnergy per Day (BTU) Needed in Tank23,000 BTU / DaySTU to KWh Energy Conversion \ddagger 3,412 kWh / BTUEnergy per Day (KWh) 6.7 kWh / DayDays per Month $a.30.4$ Days per MonthDarys per Year 3.62 Days per YearEnergy (KWh) Needed in Tank to Heat Water per Year $2,459$ kWh / YearElec. Res. Water Heater Efficiency $a.30.0$ COPBase SERWH Energy Usage per Year at the Meter $2,732$ kWh / YearDesign Annual Solar Fraction90% Water HeatedEnergy Usage per Year at the Meter $2,732$ kWh / YearDasign Pump Energy 0.082 kWPump Energy used per Year 1.06 kWh / YearDasign Solar System Energy Usage 3.79 kWh / YearDesign Solar System Energy Usage $2,732$ kWh / YearDesign Solar System Energy Usage $2,353$ kWh / YearDesign Solar System Energy Savings $2,065$ kWh / YearDesign Solar System Energy Savings $2,065$ kWh / YearDesign Solar System Energy Savings $2,065$ kWh / YearDesign Solar System Energy Savings $2,06$	•
Energy per Day (BTU) Needed in Tank 23,000 BTU/Day Energy per Day (BTU) Needed in Tank 23,000 BTU/Day Energy per Day (BTU) Needed in Tank 23,000 BTU/Day Energy (kWh) Energy Conversion - 3,412 kWh / Bau Energy (kWh) per Month 30.4 Days per Month 205 kWh / Month Days per Year - 3.65 Days per Year 2,459 kWh / Year Elec. Res. Water Heater Efficiency 3ase SERWH Energy Usage per Year at the Meter 2,732 kWh / Year Design Annual Solar Fraction 90% Water Heated 10% Water Heated Energy Usage per Year at the Meter 2,732 kWh / Year 2,732 kWh / Year Design Annual Solar Fraction 90% Water Heated 10% Water Heated Energy Usage per Year at the Meter 2,732 kWh / Year 2,732 kWh / Year Davp Energy used per Year 0.082 kW x 1,292 Hours per Year Davp Energy used per Year 106 kWh / Year 2,353 kWh / Year Design Solar System Energy Usage 379 kWh / Year 2,353	rature Rise
Energy per Day (BTU) Needed in Tank 23,000 BTU/Day STU to kWh Energy Conversion 3,412 kWh / BTU Energy per Day (kWh) 5.7 kWh / Day Days per Month 6.7 kWh / Day Energy (kWh) per Month 205 kWh / Month Days per Year 3.64 Days per Year Energy (kWh) Needed in Tank to Heat Water per Year 2.459 kWh / Year Elec. Res. Water Heater Efficiency 3ase SERWH Energy Usage per Year at the Meter 2.732 kWh / Year Design Annual Solar Fraction 90% Water Heated 10% Water Heated Energy Usage per Year at the Meter 2.732 kWh / Year Circulation Pump Energy 0.082 kW x 10% Water Heated Dump Energy used per Year 0.082 kW x 1,292 Hours per Year Dasse SERWH Energy Usage per Year at the Meter 2.732 kWh / Year 2,732 kWh / Year Design Solar System Energy Usage 379 kWh / Year 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year 2,353 kWh / Year Design Solar System Energy Savings 2,353	lbs.
BTU to kWh Energy Conversion ÷ 3,412 kWh / BTU inergy (kWh) Auge per Month 6.7 kWh / Day Days per Month 205 kWh / Month Days per Year 2,459 kWh / Year Energy (kWh) Needed in Tank to Heat Water per Year 2,459 kWh / Year Elec. Res. Water Heater Efficiency asse SERWH Energy Usage per Year at the Meter 2,732 kWh / Year Design Annual Solar Fraction 90% Water Heated 10% Water Heated Energy Usage per Year at the Meter 2,732 kWh / Year x 10% Water Heated Back Up Element Energy Used at Meter 273 kWh / Year x 10% Water Heated Circulation Pump Energy 0.082 kW x 10% Wuh / Year Back Up Element Energy Used at Meter 273 kWh / Year x 106 kWh / Year Back Up Element Energy Used at Meter 2,732 kWh / Year 2,732 kWh / Year x 106 kWh / Year Back Up Element Energy Usege 379 kWh / Year 2,732 kWh / Year x 1,292 Hours per Year	
inergy per Day (kWh) 6.7 kWh / Day Days per Month 30.4 Days per Month Says per Year 30.4 Days per Year Energy (kWh) Needed in Tank to Heat Water per Year 2,459 kWh / Year Sase SERWH Energy Usage per Year at the Meter 2,732 kWh / Year Design Annual Solar Fraction 90% Water Heated Energy Usage per Year at the Meter 2,732 kWh / Year Design Annual Solar Fraction 90% Water Heated Energy Usage per Year at the Meter 2,732 kWh / Year Back Up Element Energy Used at Meter 2,732 kWh / Year Circulation Pump Energy 0.082 kW x 1,292 Pump Energy used per Year 0.082 kW x 1,292 Pump Energy used per Year 106 kWh / Year 2,732 kWh / Year Sake SERWH Energy Usage per Year at the Meter 2,732 kWh / Year 2,732 kWh / Year Design Solar System Energy Usage 2,353 kWh / Year 2,353 kWh / Year 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year 2,065 kWh / Year 2,065 kWh / Year	
x30.4Days per Monthinergy (kWh) per Month205kWh / MonthDays per Year205kWh / MonthChergy (kWh) Needed in Tank to Heat Water per Year2,459kWh / YearCitec. Res. Water Heater Efficiency2,322kWh / YearDesign Annual Solar Fraction90% Water Heated0.90Design Annual Solar Fraction90% Water Heated10% Water HeatedDesign Annual Solar Fraction90% Water Heated10% Water HeatedDesign Annual Solar Fraction90% Water Heated2732Design Annual Solar Fraction90% Water Heated2732Design Solar System Energy Used at Meter273kWh / YearDump Energy used per Year0.082 kWxDump Energy used per Year0.082 kWxDump Energy used per Year106kWh / YearDesign Solar System Energy Usage379kWh / YearDesign Solar System Energy Usage2,732kWh / YearDesign Solar System Energy Savings2,353kWh / YearDesign Solar System Energy Savings2,065kWh / YearDesign Solar System Energy Savings2,065kWh / YearDesign Solar System Energy Savings2,065kWh /	
Inergy (kWh) per Month205kWh / MonthDays per Year365Days per YearInergy (kWh) Needed in Tank to Heat Water per Year2,459kWh / YearIec. Res. Water Heater Efficiency2,732kWh / YearBase SERWH Energy Usage per Year at the Meter2,732kWh / YearDesign Annual Solar Fraction90%Water HeatedStart Usage per Year at the Meter2,732kWh / YearDesign Annual Solar Fraction90%Water HeatedStart Usage per Year at the Meter2,732kWh / YearDack Up Element Energy Used at Meter2,732kWh / YearStart Up Element Energy Used at Meter0.082 kWxStart Up Element Energy Used at Meter2,732kWh / YearDump Energy used per Year0.082 kWxDase SERWH Energy Used at Meter2,732kWh / YearDesign Solar System Energy Usage379kWh / YearDesign Solar System Energy Usage2,732kWh / YearDesign Solar System Energy Savings2,353kWh / YearDesign Solar System Energy Savings2,065kWh / YearDesign Solar System Energy Savings2,065kWh / YearDesign Solar System Energy Savings2,065kWh / YearDesign Solar System Energy Saving	
x365 365Days per Year 2,459Energy (kWh) Needed in Tank to Heat Water per Year ilec. Res. Water Heater Efficiency Base SERWH Energy Usage per Year at the Meter2,459kWh / Year 2,732Design Annual Solar Fraction90%Water Heated 10% Water Heated2,732kWh / YearDesign Annual Solar Fraction90%Water Heated 10% Water Heated2,732kWh / YearDesign Annual Solar Fraction90%Water Heated 10% Water Heated2,732kWh / YearDesign Annual Solar Fraction90%Water Heated 2,732kWh / YearDesign Annual Solar Fraction90%Water Heated 	th
Energy (kWh) Needed in Tank to Heat Water per Yearlec. Res. Water Heater Efficiencywase SERWH Energy Usage per Year at the MeterDesign Annual Solar Fractionwase SERWH Energy Usage per Year at the MeterDesign Annual Solar FractionSolar System Energy Used at MeterCirculation Pump Energywump Hours of Operationwump Energy used per YearWump Hours of Operationwump Energy used per YearWump Energy used per YearWater Energy Usage per Year at the MeterCirculation Pump Energywump Energy used per YearWase SERWH Energy Usage per Year at the MeterWase SERWH Energy Usage per Year at the MeterDesign Solar System Energy UsageAsse SERWH Energy Usage per Year at the MeterDesign Solar System Energy UsageDesign Solar System Energy SavingsDesign Solar System Ene	
Hec. Res. Water Heater Efficiency ÷ 0.90 COP Base SERWH Energy Usage per Year at the Meter 2,732 kWh / Year Design Annual Solar Fraction 90% Water Heated 10% Water Heated Energy Usage per Year at the Meter 2,732 kWh / Year Back Up Element Energy Used at Meter 2,732 kWh / Year Circulation Pump Energy 0.082 kW x Pump Hours of Operation x 1,292 Hours per Year Pump Energy used per Year 0.082 kW x 1,292 Hours per Year Back Up Element Energy Used at Meter 273 kWh / Year x 1,292 Hours per Year Back Up Element Energy Used at Meter 2,732 kWh / Year x 1,292 Hours per Year Back Up Element Energy Usage x 1,292 Hours per Year 106 kWh / Year Base SERWH Energy Usage per Year at the Meter 2,732 kWh / Year 2,732 kWh / Year Design Solar System Energy Usage 2,732 kWh / Year 2,353 kWh / Year 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year 2	
Base SERWH Energy Usage per Year at the Meter 2,732 kWh / Year Design Annual Solar Fraction 90% Water Heated 10% Water Heated Energy Usage per Year at the Meter 2,732 kWh / Year Back Up Element Energy Used at Meter 2,732 kWh / Year Circulation Pump Energy 0.082 kW Yump Hours of Operation 1,292 Hours per Year Pump Energy used per Year 0.082 kW Sack Up Element Energy Used at Meter 2,732 kWh / Year Pump Energy used per Year 0.082 kW Sack Up Element Energy Used at Meter 2,732 kWh / Year Pump Energy used per Year 106 kWh / Year Design Solar System Energy Usage 379 kWh / Year Design Solar System Energy Usage 2,732 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,065 kWh / Year Design Solar System Energy Savings 2,065 kWh / Year Design Solar System Energy Savings 2,065 <	
Design Annual Solar Fraction90% Water Heated 10% Water HeatedDesign Annual Solar Fraction90% Water Heated 10% Water HeatedEnergy Usage per Year at the Meter2,732 kWh / Year 2,732 kWh / YearDesign Solar Press0.082 kW 2,732 kWh / YearDesign Solar System Energy Usage0.082 kW 2,732 kWh / YearDesign Solar System Energy Usage273 kWh / YearDesign Solar System Energy Usage2,732 kWh / YearDesign Solar System Energy Savings2,353 kWh / YearDesign Solar System Energy Savings2,065 kWh / YearDesign Solar System Energy Savings2,065 kWh / YearDesign Solar System Energy Savings2,065 kWh / YearDesign Solar Whater Heater Energy Savings2,065 kWh / YearDesign Solar System Energy Savings2,065 kWh / Year	
10% Water HeatedEnergy Usage per Year at the Meter2,732kWh / YearBack Up Element Energy Used at Meter273kWh / YearCirculation Pump Energy0.082kWPump Hours of Operationx1,292Pump Energy used per Year106kWh / YearBack Up Element Energy Used at Meter273kWh / YearPump Energy used per Year106kWh / YearBack Up Element Energy Used at Meter273kWh / YearPump Energy used per Year+106kWh / YearDesign Solar System Energy Usage379kWh / YearDesign Solar System Energy Usage-379kWh / YearDesign Solar System Energy Usage-379kWh / YearDesign Solar System Energy Savings2,353kWh / YearDesign Solar System Energy Savings2,353kWh / YearDesign Solar System Energy Savings2,353kWh / YearDesign Solar System Energy Savings2,065kWh / YearDesign Sol	KEMA 2008 - HECO
Energy Usage per Year at the Meter2,732kWh / Yearack Up Element Energy Used at Meter273kWh / Yearirculation Pump Energy ump Hours of Operation0.082kWump Energy used per Year106kWh / Yeartack Up Element Energy Used at Meter tump Energy used per Year273kWh / Yeartack Up Element Energy Used at Meter tump Energy used per Year273kWh / Yeartack Up Element Energy Used at Meter tump Energy Used per Year273kWh / Yeartack Up Element Energy Usage379kWh / Yeartacse SERWH Energy Usage per Year at the Meter tersign Solar System Energy Usage2,353kWh / Yeartesign Solar System Energy Savings2,353kWh / Yearterformance Factor tersistance Factor0.94pftesidential Solar Water Heater Energy Savings2,065kWh / Yeartesidential Solar Water Heater Energy Savings2,065kWh / Yeartase SERWH Element Power Consumption4.0kW	by Solar System Program Design
x 10% Water Heated wack Up Element Energy Used at Meter 273 kWh / Year dirculation Pump Energy 0.082 kW ump Hours of Operation x 1,292 Hours per Year dack Up Element Energy Used at Meter 273 kWh / Year dack Up Element Energy Used at Meter 273 kWh / Year dack Up Element Energy Used at Meter 273 kWh / Year dack Up Element Energy Used at Meter 273 kWh / Year dase SERWH Energy Usage per Year at the Meter 2,732 kWh / Year dase SERWH Energy Usage per Year at the Meter 2,732 kWh / Year dase SERWH Energy Usage per Year at the Meter 2,353 kWh / Year design Solar System Energy Savings 2,353 kWh / Year design Solar System Energy Savings 2,353 kWh / Year design Solar System Energy Savings 2,353 kWh / Year design Solar System Energy Savings 2,065 kWh / Year design Solar System Energy Savings 2,065 kWh / Year design Solar System Energy Savings 2,065 kWh / Year design Solar System Factor 0.94	by Remaining Backup Element
ack Up Element Energy Used at Meter273kWh / Yearirculation Pump Energy ump Hours of Operation0.082kWump Energy used per Year106kWh / Yearack Up Element Energy Used at Meter ump Energy used per Year273kWh / Yearack Up Element Energy Used at Meter ump Energy used per Year273kWh / Yearack Up Element Energy Used at Meter ump Energy used per Year273kWh / Yearack Up Element Energy Used at Meter ump Energy used per Year273kWh / Yearase SERWH Energy Usage per Year at the Meter esign Solar System Energy Usage2,732kWh / Yearase SIRWH Energy Usage per Year at the Meter esign Solar System Energy Savings2,353kWh / Yearesign Solar System Energy Savings2,065kWh / Yearesidential Solar Water Heater Energy Savings2,065kWh / Year Sase SERWH Element Power Consumption4.0kW	
Linculation Pump Energy tump Hours of Operation tump Energy used per Year0.082 kW xLack Up Element Energy Used at Meter tump Energy used per Year273 kWh / YearLack Up Element Energy Used at Meter tump Energy used per Year273 kWh / YearLack Up Element Energy Usage379 kWh / YearLack Up Element Energy Usage2,732 kWh / YearLack Up Element Energy Usage- 379 kWh / YearLack Up Element Energy Savings2,353 kWh / YearLack Up Element Energy Savings2,353 kWh / YearLack Up Element Energy Savings2,353 kWh / YearLack Up Element Energy Savings2,065 kWh / YearLack Up Element Energy Savings2,065 kWh / YearLack Up Element Power Consumption4.0 kW	by Remaining Backup Element
x 1,292 Hours per Year ump Energy used per Year 106 kWh / Year kack Up Element Energy Used at Meter 273 kWh / Year hump Energy used per Year + 106 kWh / Year hump Energy used per Year + 106 kWh / Year hump Energy used per Year + 106 kWh / Year hump Energy Usage per Year at the Meter 2,732 kWh / Year hums Solar System Energy Usage - 379 kWh / Year hums Solar System Energy Savings 2,353 kWh / Year 2,353 kWh / Year hums Design Solar System Energy Savings 2,353 kWh / Year 2,065 kWh / Year hums Design Solar System Energy Savings 2,065 kWh / Year 2,065 kWh / Year hums Design Solar System Energy Savings 2,065 kWh / Year 2,065 kWh / Year hums Design Solar System Energy Savings 2,065 kWh / Year 2,065 kWh / Year hums Design Solar System Factor 4.0 kW KWh / Year 2,065 kWh / Year	
Pump Energy used per Year 106 kWh / Year Back Up Element Energy Used at Meter 273 kWh / Year Pump Energy used per Year + 106 kWh / Year Design Solar System Energy Usage 379 kWh / Year Design Solar System Energy Usage 2,732 kWh / Year Design Solar System Energy Usage - 379 kWh / Year Design Solar System Energy Usage - 379 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,065 kWh / Year Design Solar System Energy Savings 2,065 kWh / Year Design Solar System Energy Savings 2,065 kWh / Year Design Solar Water Heater Energy Savings 2,065 kWh / Year Design Solar White Heater Energy Savings 2,065 kWh / Year Design Solar System Heater Energy Savings 4.0 kW	KEMA 2008
Back Up Element Energy Used at Meter 273 kWh / Year Pump Energy used per Year + 106 kWh / Year Design Solar System Energy Usage 379 kWh / Year 379 kWh / Year Base SERWH Energy Usage per Year at the Meter 2,732 kWh / Year 2,732 kWh / Year Design Solar System Energy Usage - 379 kWh / Year 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year 0.94 pf Design Solar System Energy Savings 2,065 kWh / Year 2,065 kWh / Year Design Solar System Energy Savings 2,065 kWh / Year 2,065 kWh / Year Base SERWH Element Power Consumption 4.0 kW KW KW	ar KEMA 2008
Pump Energy used per Year + 106 kWh / Year Design Solar System Energy Usage 379 kWh / Year Dasaes SERWH Energy Usage per Year at the Meter 2,732 kWh / Year Design Solar System Energy Usage - 379 kWh / Year Design Solar System Energy Usage - 379 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,065 kWh / Year Design Solar System Energy Savings 2,065 kWh / Year Design Solar System Energy Savings 2,065 kWh / Year Residential Solar Water Heater Energy Savings 2,065 kWh / Year S Base SERWH Element Power Consumption 4.0 kW	
Design Solar System Energy Usage 379 kWh / Year Base SERWH Energy Usage per Year at the Meter 2,732 kWh / Year Design Solar System Energy Usage - 379 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,065 kWh / Year Design Solar System Energy Savings 2,065 kWh / Year Design Solar System Energy Savings 2,065 kWh / Year Residential Solar Water Heater Energy Savings 2,065 kWh / Year S Base SERWH Element Power Consumption 4.0 kW	72%
Base SERWH Energy Usage per Year at the Meter 2,732 kWh / Year Design Solar System Energy Usage - 379 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,065 kWh / Year Persistance Factor x 0.93 pf 2,065 kWh / Year 2,065 kWh / Year Residential Solar Water Heater Energy Savings 2,065 kWh / Year S Base SERWH Element Power Consumption 4.0 kW	28%
Design Solar System Energy Usage - 379 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,055 kWh / Year Residential Solar Water Heater Energy Savings 2,065 kWh / Year Base SERWH Element Power Consumption 4.0 kW	
Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,353 kWh / Year Design Solar System Energy Savings 2,055 kWh / Year Design Solar System Energy Savings 2,065 kWh / Year Residential Solar Water Heater Energy Savings 2,065 kWh / Year Base SERWH Element Power Consumption 4.0 kW	
Design Solar System Energy Savings 2,353 kWh / Year Deriormance Factor 0.94 pf Persistance Factor x 0.93 pf 2,065 kWh / Year 2,065 kWh / Year Residential Solar Water Heater Energy Savings 2,065 kWh / Year Base SERWH Element Power Consumption 4.0 kW	
Performance Factor 0.94 pf Persistance Factor x 2,065 kWh / Year Residential Solar Water Heater Energy Savings 2,065 kWh / Year	
x 0.93 pf 2,065 kWh / Year Residential Solar Water Heater Energy Savings 2,065 kWh / Year Rase SERWH Element Power Consumption 4.0 kW	
2,065 kWh / Year Residential Solar Water Heater Energy Savings 2,065 kWh / Year S Rase SERWH Element Power Consumption 4.0 kW	HE
Residential Solar Water Heater Energy Savings 2,065 kWh / Year S Base SERWH Element Power Consumption 4.0 kW	KEMA 2008
Base SERWH Element Power Consumption 4.0 kW	KEMA 2008
•	avings
•	
	8.6 Minutes per hou
Base SERWH On Peak Demand 0.57 kW On Peak	KEMA 2008
Base SERWH On Peak Demand - 0.57 kW On Peak	
Solar System Metered on Peak Demand - 0.11 kW On Peak	KEMA 2008
0.46 kW On Peak	
Residential Solar Water Heater Demand Savings 0.46 kW Savings	

Program Year 4 July 1, 2012 to June 30, 2013

Operating Hours See Table above.

Loadshape TBD

Freeridership/Spillover Factors TBD

Persistence

The persistence factor has been found to be 0.93 based in the KEMA 2005-07 report that found 7% of the systems not operational.

Lifetime 20 years (Table 7.3)

Measure Costs and Incentive Levels

Table 1 – SWH Measure Costs and Incentive Levels

Description	Unit	Incentive	Incremental Cost
Non-Military	\$	750	\$6,600

Component Costs and Lifetimes Used in Computing O&M Savings TBD

Reference Tables

None

Program Year 4 July 1, 2012 to June 30, 2013

8.1.2 Solar Water Heating Loan Interest Buydown (Hot Water Cool Rates)

Version Date & Revision History Draft date: May 22, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Energy and Peak Demand Impact Evaluation Report of the 2005-2007 Demand Management Programs – (KEMA 2005-07)
- Econorthwest TRM Review 6/23/10
- Evergreen TRM Review 2/23/12

TRM Review Actions:

- 6/23/10 Rec. # 6 For PY 2010, adjust claimed demand savings based on participant data from all service territories covered. Adjust Demand Savings based on participant data weighted average of KEMA results across all counties. Change from 0.50 to 0.46 kW. non-military – Adopted and incorporated into PY2010-1 TRM.
- 6/23/10 Rec. # 7 For PY 2010, include a discussion of shell losses in the savings analysis and supporting documentation. Discussion included in PY2010-1 TRM.
- 10/5/11 Currently Under Review.

Major Changes:

- Eliminated Military figure as no foreseeable military retrofit applications will be received.
- Demand change to weighted average from KEMA 2008. 0.46 kW
- Changed individual water usage from 13.3035 to 13.3

Measure Description:

The Solar Water Heating Loan Interest Buydown Program offers eligible borrowers an interest buy down of \$1,000 (with a minimum loan of \$5,000) toward the financing of a solar water heating system from a participating lender – see <u>www.hawaiienergy.com</u> for a list of participating lenders.

Replacement of Electric Resistance Water Heater with a Solar Water Heater designed for a 90% Solar Fraction. The new Solar Water Heating systems most often include an upgrade of the hot water storage tank sized at 80 or 120 gallons.

Systems must comply with Hawaii Energy Solar Standards and Specifications which call out:

- Panel Ratings
- System Sizing
- Installation orientation de-rating factors
- Hardware and mounting systems

Shell Losses:

The increase in size from a 40 or 60 gallon to an 80 or 120 gallon standard electric resistance water heater would in and of itself increase the "shell" losses of the system. These shell losses are the result of a larger surface area exposing the warm water to the cooler environment and thus more heat lost to the environment through conduction through the tank. Engineering calculations by Econorthwest puts this at a 1% increase in losses. This is further reduced by 90% as the solar water system provides that fraction of the annual water heating requirements.

Baseline Efficiencies:

Baseline usage is a 0.9 COP Electric Resistance Water Heater. The baseline water heater energy consumption is by a single 4.0 kW electric resistance element that is controlled thermostatically on/off

Program Year 4 July 1, 2012 to June 30, 2013

controller based of tank finish temperature set point. The tank standby loss differences between baseline and high efficiency case are assumed to be negligible.

Demand Baseline has been determined by field measurements by KEMA 2005-07 report. The energy baseline also comes from the KEMA 2005-07 report and is supported by engineering calculations shown in this TRM.

Building Types	Demand Baseline(kW)	Energy Baseline (kWh)
Residential	0.57	2,733

High Efficiency:

Solar Water Heater designed for a 90% Solar Fraction. The Solar Systems use solar thermal energy to heat the water 90% of the time and continue to utilize electricity to operate the circulation pump and provide heating through a 4.0 kW electric resistance element when needed.

Solar Contractors do not favor Photo-Voltaic powered DC circulation pumps as they have proven less reliable in the field than an AC powered circulation pump.

The electric resistance elements in the high efficiency case do not have load control timers on them.

The energy is the design energy of a 90% solar fraction system with circulation pump usage as metered by KEMA 2008.

The on peak demand is the metered demand found by KEMA 2008.

Building Types	Demand High Efficiency (kW)	Energy High Efficiency (kWh)	Circ. Pump %
Residential	0.07	379	28%

Energy Savings:

Solar Water Heater Gross Savings before operational adjustments:

Building Types	Demand Savings (kW)	Energy Savings (kWh)
Residential	0.46	2,354

Operational Factor	Adjustment Factor
Solar Fraction Performance (sfp)	0.94
Persistence Factor (pf)	0.93
Demand Coincidence Factor (cf)	1.0

Solar Water Heater Net Savings after operational adjustments:

Building Types	Demand Savings (kW)	Energy Savings (kWh)
Residential	0.46	2,065

Savings Algorithms

Hawaii Energy - Technical Reference Manual No. 2012

Program Year 4 July 1, 2012 to June 30, 2013

hergy per Day (BTO) = (Gallons per Day) x (lbs. per Gal.) x (Tem	p Rise) x (Energy to Raise Water Temp)	
Hot Water needed per Person		13.3 Gallons per Day per Person	HE
Average Occupants	х	3.77 Persons	KEMA 2008
Household Hot Water Usage		50.141 Gallons per Day	
Mass of Water Conversion		8.34 lbs/gal	
Finish Temperature of Water		130 deg. F Finish Temp	
Initial Temperature of Water	-	75 deg. F Initial Temp	
Temperature Rise		55 deg. F Temperature Rise	
Energy to Raise Water Temp		1.0 BTU/deg. F/lbs.	_
nergy per Day (BTU) Needed in Tank		23,000 BTU/Day	
nergy per Day (BTU) Needed in Tank		23,000 BTU/Day	
TU to kWh Energy Conversion	÷	3,412 kWh / BTU	
nergy per Day (kWh)		6.7 kWh/Day	
ays per Month	х	30.4 Days per Month	
nergy (kWh) per Month		205 kWh / Month	
ays per Year	х	365 Days per Year	
nergy (kWh) Needed in Tank to Heat Water per Year		2,459 kWh / Year	
ec. Res. Water Heater Efficiency ase SERWH Energy Usage per Year at the Meter	÷	0.90 COP	
ase SERWH Energy Usage per Year at the Meter		2,732 kWh / Year	KEMA 2008 - HECO
esign Annual Solar Fraction		90% Water Heated by Solar System	Program Design
		10% Water Heated by Remaining Backup Element	
nergy Usage per Year at the Meter		2,732 kWh / Year	
	х	10% Water Heated by Remaining Backup Element	
ack Up Element Energy Used at Meter		273 kWh / Year	
rculation Pump Energy		0.082 kW	KEMA 2008
ump Hours of Operation	х	1,292 Hours per Year	KEMA 2008
ımp Energy used per Year		106 kWh/Year	
ack Up Element Energy Used at Meter		273 kWh / Year	72%
ump Energy used per Year	+	106 kWh / Year	28%
esign Solar System Energy Usage		379 kWh / Year	
ase SERWH Energy Usage per Year at the Meter		2,732 kWh / Year	
esign Solar System Energy Usage	-	379 kWh / Year	
esign Solar System Energy Savings		2,353 kWh / Year	
esign Solar System Energy Savings		2,353 kWh / Year	
erformance Factor		0.94 pf	HE
ersistance Factor	х	0.93 pf	KEMA 2008
-		2,065 kWh / Year	KEMA 2008

Operating Hours

See Table above.

Loadshape TBD

Freeridership/Spillover Factors TBD

Program Year 4 July 1, 2012 to June 30, 2013

Persistence

The persistence factor has been found to be 0.93 based in the KEMA 2005-07 report that found 7% of the systems not operational.

Lifetime 20 years (Table 7.3)

Measure Costs and Incentive Levels

Incentive = \$1000 to lender to buydown interest on SWH loan.

Program Year 4 July 1, 2012 to June 30, 2013

8.1.3 Solar Water Heater Energy Hero Gift Packs

Version Date & Revision History Draft date: October 4, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Energy and Peak Demand Impact Evaluation Report of the 2005-2007
- Demand Management Programs KEMA (KEMA 2005-07)
- Econorthwest TRM Review 6/23/10
- Energy and Peak Demand Impact Evaluation Report of the 2005-2007 Demand Management Programs – (KEMA 2005-07)
- Evergreen TRM Review 2/23/12

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

- 11/22/11 LED algorithm updated. See section 8.2.2 for changes.
- 11/22/11 Akamai Power Strip kWh savings updated based on NYSERDA Measure Characterization for Advanced Power Strips.
- 11/22/11 Updated content in headings *Description*, *Base Case*, *High Efficiency Case*, and *Energy Savings* in regard to LED lamps to match section 8.2.2.
- 11/29/11 Low Flow Shower Head algorithm updated previously claiming only 50% of total energy savings due to inaccurately calculating hot and cold water mix. Also updated *Energy Savings* table as necessary.
- 4/17/12 Updated CFL and LED algorithms to refer to CFL and LED sections in TRM to ensure accuracy. Updated energy savings numbers to be consistent with EMV revisions.

Description:

Potential gift pack components:

- Compact Fluorescent Lamp
- Akamai Power Strip
- LED Lamp
- Low Flow Shower Head

Base Case

- 60 W incandescent lamps
- Standard power strip or no power strip
- 25% 60W incandescent, 25% 40W incandescent, 25% 23W CFLs and 25% 13W CFLs (See LED TRM)
- Low Flow Shower Head rated at 2.5 gpm

High Efficiency Case

- 15W CFLs
- Akamai Power Strip
- 50% 7W LED Lamp and 50% 12.5W LED Lamp
- Low Flow Shower Head rated at 1.5 gpm

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings

Measure	Energy Savings (kWh/year)	Demand Savings (kW)
3 CFL	108.8	0.0156
Power Strip	78.0	0.0089
LED	16.6	0.0026
Low Flow Shower Head - Solar	42.5	0.0220
TOTAL	246	0.049

Measure life

Measure	Measure Life (Years)
Compact Fluorescent Lamp	5
Akamai Power Strip	5
LED	5
Low Flow Shower Head	10

Savings Algorithms

CFL - Single and Multi Family Residential Home

Refer to TRM Compact Fluorescent Lamp (CFL) Section

Savings per Unit			
	56.5 kWh	102.8 kWh	NYSERDA Measure Characterization for
Plugs per Unit	5 plugs	7 plugs	Advanced Power Strips
Savings per Plug	11.3 kWh/plug	14.68571 kWh/plug	
Average Savings per Plug		13.0 kWh	
	х	6 plugs/unit	_
Akamai Power Strip Energy Savings		78 kWh per Unit first year	
Hours of Operation		8760 hours/year	-
Demand Savings		0.0089 kW	
First Year Savings		78 kWh first year	
Measure Life	х	5 year measure life	
Lifetime Savings		389.78571 kWh lifetime	
Total Resource Cost	Ś	30.96	
Total Resource Benefit	÷ \$	46.15	
Total Resource Cost Ratio		1.5 TRB Ratio	
Potential Akamai Power Strip Incentive	\$	7.00	
First Year Savings	÷	66 kWh first year	
	\$	0.11 per kWh first year	
Standard Power Strip Cost	\$	14.49	
Akamai Power Strip Cost	\$	30.96	
Incremental Akamai Power Strip Cost	\$	16.47	
Incremental Akamai Power Strip Cost	\$	16.47	
Potential Akamai Power Strip Incentive	÷_\$	7.00	
Percentage of Incremental Cost	_	43%	
Akamai Power Strip Cost	\$	30.96	
Potential Akamai Power Strip Incentive	÷_\$	7.00	
Percentage of Customer Measure Cost		23%	

Program Year 4 July 1, 2012 to June 30, 2013

LED - Single and Multi Family Residential Home

Refer to TRM Light Emitting Diode (LED) Section

Low Flow Showerhead w/Solar Water Heating

Energy per Day (BTU) = (Gallons per Day) x (lbs. per Gal.) x (Temp Rise) x (Energy to Raise Water Temp)

Hot Water needed per Person Average Occupants		.3 Gallons per Day per Person 77 Persons	HE KEMA 2008
Household Hot Water Usage		2 Gallons per Day	
Mass of Water Conversion	8.3	34 lbs/gal	
Finish Temperature of Water	13	30 deg. F Finish Temp	
Initial Temperature of Water	- 7	<u>′5</u> deg. F Initial Temp	
Temperature Rise	5	5 deg. F Temperature Rise	
Energy to Raise Water Temp	1	.0 BTU/deg.F/lbs.	_
Energy per Day (BTU) Needed in Tank	23,00	6 BTU/Day	
Energy per Day (BTU) Needed in Tank	23,00	5 BTU/Day	
BTU to kWh Energy Conversion	÷ 3,41	2 BTU/kWh	
Energy per Day (kWh)	6.	7 kWh / Day	
Days per Month	x 30.4	Days per Month	
Energy (kWh) per Month	20	5 kWh/Month	
Days per Year	x 36	5 Days per Year	
Energy (kWh) Needed in Tank to Heat Water per Year	2,46) kWh/Year	
Elec. Res. Water Heater Efficiency	÷ 0.9)_COP	
Base SERWH Energy Usage per Year at the Meter	2,73	3 kWh / Year	KEMA 2008 - HECO
Design Annual Solar Fraction		% Water Heated by Solar Syst % Water Heated by Remaining	
Energy Usage per Year at the Meter	2,73	3 kWh/Year	
-	x 10	Water Heated by Remaining	Backup Element
Back Up Element Energy Used at Meter	27:	3 kWh / Year	
Circulation Pump Energy	0.08	32 kW	KEMA 2008
Pump Hours of Operation	x 1,29	2 Hours per Year	KEMA 2008
Pump Energy used per Year	10	5 kWh / Year	
Back Up Element Energy Used at Meter	27	3 kWh / Year	72%
Pump Energy used per Year	+ 10	6 kWh / Year	28%
Design Solar System Energy Usage	37	9 kWh/Year	
Utilization Factor	28	%	Hot water used for showers (AMMA)
Hot Water Usage from Showers	10	5	
Base Case Showerhead	2	.5 GPM	
High Efficiency Case Showerhead		5 GPM	
Savings = (1 - High Efficiency/Base)	40		
Energy Savings	4	2 kWh / Year]
Solar System Metered on Peak Demand	0.1	1 kW On Peak	KEMA 2008
Demand Savings	40	%	
Residential Low Flow Shower Head Demand Saving	gs 0.04	4 kW Savings	

Program Year 4 July 1, 2012 to June 30, 2013

8.1.4 Heat Pump Water Heaters

Measure ID: See Table 7.3

Version Date & Revision History Draft date: March 2, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- From SalesForce Measures (Impact)
- October 2004 (KEMA Report)
- Evergreen TRM Review 2/23/12

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

- Recognizing the growing product availability and sales efforts regarding residential heat pumps, increase educational efforts.
- Changed base SERWH element power consumption from 4.5 kW to 4.0 kW

Measure Description:

Residential heat pump rebates are available at \$200. Rebate applications for water heaters are provided by the retailers at the time of purchase or a customer can visit our website and download the form. Rebate applications must include an original purchase receipt showing brand and model number.

Baseline Efficiencies:

The base case is a standard electric resistance water heater (SERWH).

Measure	Demand Baseline (kW)	Energy Baseline (kWh/year)
SERWH	0.57	2,732

High Efficiency:

Measure	Demand Efficient Case (kW)	Efficient Case (kWh/year)
Heat Pump Water Heating	0.36	1,230

Energy Savings:

	Demand Savings (kW)	Energy Savings (kWh/year)
Savings	0.25	1,503

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms

Heat Pump Water Heater			
Energy per Day (BTU) = (Gallons per Day) x (lbs. per Ga	l.) x (Ten	np Rise) x (Energy to Raise Water Temp)	
Hot Water needed per Person		13.3 Gallons per Day per Person	HE
Average Occupants	x	3.77 Persons	KEMA 2008
= Household Hot Water Usage		50.1 Gallons per Day	
Mass of Water Conversion		8.34 lbs/gal	
Finish Temperature of Water		130 deg. F Finish Temp	
Initial Temperature of Water	-	75 deg. F Initial Temp	
Temperature Rise		55 deg. F Temperature Rise	
Energy to Raise Water Temp		1.0 BTU / deg. F / lbs.	
Energy per Day (BTU) Needed in Tank	23	3,000 BTU/Day	
Energy per Day (BTU) Needed in Tank	23	3,000 BTU/Day	
BTU to kWh Energy Conversion	÷ 3	3,412 kWh / BTU	
Energy per Day (kWh)		6.7 kWh/Day	
Days per Month	х	30.4 Days per Month	
Energy (kWh) per Month		205 kWh / Month	
Days per Year	х	365 Days per Year	
Energy (kWh) Needed in Tank to Heat Water per Year	2	2,459 kWh / Year	
Elec. Res. Water Heater Efficiency	÷	0.90 COP	
Base SERWH Energy Usage per Year at the Meter	2	2,732 kWh / Year	KEMA 2008 - HECO
Energy (kWh) Needed to Heat Water per Year	7	2,459 kWh/Year	
Heat Pump Water Heating Efficiency		2.00 COP	
Heat Pump Water Heating Energy Usage			
Heat Pump water Heating Energy Usage	1	1,230 kWh / Year	
Base SERWH Energy Usage per Year at the Meter	2	2,732 kWh / Year	
Heat Pump Water Heating Energy Usage	- 1	1,230 kWh / Year	
Residential Heat Pump Water Heating Savings	1	1,503 kWh / Year	
Hart During Davies Consumption		4.5 - 1044	
Heat Pump Power Consumption Coincedence Factor		4.5 kW 0.08 cf	4.00 Minutes as her
=	х		4.80 Minutes per hou
		0.36 kW On Peak	
Base SERWH Element Power Consumption		4.0 kW	
Coincidence Factor =	X C	0.143 cf	8.6 Minutes per hour
Base SERWH On Peak Demand		0.57 kW On Peak	KEMA 2008
Base SERWH On Peak Demand	-	0.57 kW On Peak	
Heat Pump Water Heater Demand	-	0.36 kW On Peak	KEMA 2008
-		0.21 kW On Peak	
Residential Heat Pump Demand Savings		0.21 kW Savings	

Program Year 4 July 1, 2012 to June 30, 2013

Operating Hours See Table above.

Loadshape TBD

Freeridership/Spillover Factors TBD

Persistence

Lifetime 10 years (DEER)

Measure Costs and Incentive Levels

Incentive = \$200

Component Costs and Lifetimes Used in Computing O&M Savings TBD

Reference Tables

Program Year 4 July 1, 2012 to June 30, 2013

8.2 High Efficiency Lighting

8.2.1 Compact Fluorescent Lamp (CFL)

Version Date & Revision History Draft date: February 24, 2010 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Energy and Peak Demand Impact Evaluation Report of the 2005-2007
- Demand Management Programs KEMA (KEMA 2005-07)
- Econorthwest TRM Review 6/23/10
- Evergreen TRM Review 2/23/12

TRM Review Actions:

- 6/23/10 Rec. # 8 Starting with PY2010, adjust the hours used per day for CFLs from 4.98 to 2.3 in order to be consistent with other literature. Conduct additional research to verify the most appropriate hours of operation for the Hawaii customer base, which can be incorporated into future years. Adopted.
- 6/23/10 Rec. # 9 Starting with PY 2010, adjust the peak coincidence factor from 0.334 to 0.12 to be consistent with the literature. Conduct additional research to verify the most appropriate coincidence factor for the Hawaii customer base, which can be incorporated into future years.-Adopted.
- 10/5/11 Currently Under Review.
- 4/17/12 Updated persistence factor to 0.96 and removed adjustment for mix of CFL sizes found in CA study as per EMV report February 23, 2012. Updated energy and demand savings accordingly.

Major Changes:

- Hours used per day for CFLs from 4.98 to 2.3 hrs.
- Peak coincidence factor from 0.334 to 0.12
- Persistence factor changed from 0.80 to 0.96 as per EMV
- Adjustment for mix of CFL sized found in CA study removed as per EMV

Measure Description:

The replacement of incandescent screw-in lamps to standard spiral compact fluorescent lamps in Residential Single Family and Multi-family homes.

Lamps must comply with:

- Energy Star
- UL I

Baseline Efficiencies:

Baseline usage is a 60W A-Shaped incandescent lamp with the energy consumption as follows:

Building Types	Demand Baseline(kW)	Energy Baseline (kWh)
Single Family	0.060	50.4
Multi Family	0.060	50.4

Program Year 4 July 1, 2012 to June 30, 2013

High Efficiency:

The high efficiency case is a 15W Spiral CFL with the energy consumption as follows:

Building Types	Demand High Efficiency (kW)	Energy High Efficiency (kWh)
Single Family	0.015	12.6
Multi Family	0.015	12.6

Energy Savings:

CFL Gross Savings before operational adjustments:

Building Types	Demand Savings (kW)	Energy Savings (kWh)
Single Family	0.005	36.3
Multi Family	0.005	36.3

CFL Net Savings after operational adjustments:

Operational Factor	Adjustment Factor
Persistence Factor (pf)	0.960
Demand Coincidence Factor (cf)	0.12

Building Types	Demand Savings (kW)	Energy Savings (kWh)
Single Family	0.005	36.3
Multi Family	0.005	36.3

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms

CFL - Single and Multi Family Residential Home		
60W Incandescent Lamp Demand		0.060 kW
		2.30 Hours per Day
	х	365 Days 839.5 Hours per Year
60W Incandescent Lamp Energy Usage		50.4 kWh per Year
15W Compact Fluorescent Lamp Demand		0.015 kW
		2.30 Hours per Day
	х	365 Days 839.5 Hours per Year
15W Compact Fluorescent Lamp Energy Usage		12.6 kWh per Year
60W Incandescent Lamp Energy Usage		50.4 kWh per Year
15W Compact Fluorescent Lamp Energy Usage	-	12.6 kWh per Year
CFL Savings Before Adjustments	5	37.8 kWh per Year
		37.8 kWh per Year
Persistance Factor	х	0.960 pf 4.0% Lamps not installed or replaced back
CFL Energy Savings		36.3 kWh per Year
CEL Energy Savings		36.3 kWh / Year Savings

CFL Energy Savings		36.3 kWh / Yea	ar Savings
60W Incandescent Lamp Demand		0.060 kW	
15W Compact Fluorescent Lamp Demand	-	0.015 kW	
CFL Demand Reduction Before Adjustm	ents	0.045 kW	
CFL Demand Reduction Before Adjustments		0.045 kW	
Coincidence Factor		0.120 cf	12.0% Lamps on between 5 and 9 p.m.
Persistance Factor	х	0.960 pf	4.0% Lamps not installed or replaced ba
CFL Demand Savings		0.005 kW	

CFL Demand Savings

0.005 kW Savings

Program Year 4 July 1, 2012 to June 30, 2013

Operating Hours

2.3 hours per day, 839.5 hours per year

Loadshape

TBD

Freeridership/Spillover Factors TBD

Demand Coincidence Factor

Estimated coincidence factor of 0.12 cf assumes that 12% of the lamps purchased would be operating during the winter 5 p.m. to 9 p.m. weekday peak period.

Persistence

Estimated persistence factor of 0.96 pf which assumes 4% of the lamps purchased not installed or returned back to incandescent.

Lifetime

6 years

Measure Costs and Incentive Levels

Table 1 – Residential CFL Measure Costs and Incentive Levels

Description	Unit Incentive	Incremental Cost
Standard CFL - Res	\$ 1.00	\$ 2.50

Component Costs and Lifetimes Used in Computing O&M Savings TBD

Reference Tables None

Program Year 4 July 1, 2012 to June 30, 2013

8.2.2 Light Emitting Diode (LED)

Version Date & Revision History

Draft date: February 24, 2010 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• Evergreen TRM Review – 2/23/12

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

- 11/21/11 Updated tables and text in the following headings:
 - o Measure description
 - o Baseline efficiencies
 - o High efficiency
 - o Energy savings
 - Savings algorithm

Updates made to capture a broader range of lamp types (two wattages per lamp type) and obtain more accurate savings calculations.

- 11/21/11 Changed the following text under *Energy Savings* heading: 1) "LED Gross Savings before operational adjustments" was changed to "LED Savings before..." and 2) "CFL Net Savings after operational adjustments" was changed to "LED Savings after..."
- 11/21/11 Under *Energy Savings* heading changed table to only one building type because savings are calculated the same between single and multi-family housing.
- Removed the 1.08 size adjustment factor.

Measure Description:

The replacement of a standard incandescent lamp (40W or 60W) or spiral compact fluorescent lamp (13W or 23W) with a light emitting diode (7W or 12.5 W) in both Residential Single Family and Multi-family homes.

Lamps must comply with:

- Energy Star
- UL UL

Baseline Efficiencies:

Baseline usage is a combination of standard incandescent lamp (40W or 60W) or spiral compact fluorescent lamp (15W or 23W) A-Shaped incandescent lamp with the energy consumption as follows:

Baseline Efficiency						
Lamp Types	Demand Baseline (kW)	Hours per Day	Energy Baseline (kWh/year)	%	Totals	
Incandescent	0.060	2.3	50.4	25%	12.59	
CFL	0.015	2.3	12.6	25%	3.15	
Incandescent	0.040	2.3	33.6	25%	8.40	
CFL	0.023	2.3	19.3	25%	4.83	
Demand Ave	0.035	Total	28.96			

Program Year 4 July 1, 2012 to June 30, 2013

High Efficiency:

The high efficiency case is a 7W or 12.5W LED with the energy consumption as follows:

High Efficiency					
Lamp Types	Demand Baseline (kW)	Hours per Day	Energy Baseline (kWh/year)	%	Totals
LED	0.007	2.3	5.9	50%	2.94
LED	0.0125	2.3	10.5	50%	5.25
Demand Ave	0.010	Total High	Efficiency Ene	ergy (kWh)	8.19

Energy Savings: LED Savings before operational adjustments:

Total Baseline Energy (kWh)	29.0
Total High Efficiency Energy (kWh)	8.2
Annual Energy Savings (kWh)	20.8

LED Savings after operational adjustments:

Persistence Factor (pf)	0.80
Demand Coincidence Factor (cf)	0.12

Demand Savings (kW)	Energy Savings (kWh)
0.003	16.6

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms

LED - Single and Multi Family Residential Home		
Lamp Average Demand	0.03	5 kW
	2.3) Hours per Day
	x 36	5 Days 839.50 Hours per Year
Baseline Energy Usage	28.9	6 kWh per Year
Enhanced LED Lamp Average Demand	0.01) kW
	2.3) Hours per Day
	x 36	Days 839.50 Hours per Year
Enhanced LED Lamp Energy Usage	8.1) kWh per Year
Baseline Energy Usage	29.0	kWh per Year
Enhanced LED Lamp Energy Usage	- 8.2	_kWh per Year
LED Savings Before Adjustments	20.78	kWh per Year
	20.8	kWh per Year
Persistance Factor	x 0.800	_pf 20.0% Lamps not installed or replaced b
	16.6	kWh per Year
LED Energy Savings	16.6	kWh / Year Savings
Baseline Lamp Demand	0.03	5 kW
Enhanced LED Lamp Demand	- 0.00	7 kW
LED Demand Reduction Before Adjustments	0.02	3 kW
LED Demand Reduction Before Adjustments	0.028	kW
Coincidence Factor	0.120	cf 12.0% Lamps on between 5 and 9 p.m.
Persistance Factor	x 0.800	_pf 20.0% Lamps not installed or replaced ba
	0.003	kW
LED Demand Savings	0.003	kW Savings

Program Year 4 July 1, 2012 to June 30, 2013

Operating Hours

2.3 hours per day, 839.5 hours per year

Loadshape

TBD

Freeridership/Spillover Factors TBD

Demand Coincidence Factor

Estimated coincidence factor of 0.12 cf assumes that 12% of the lamps purchased would be operating during the winter 5 p.m. to 9 p.m. weekday peak period.

Persistence

Estimated persistence factor of 0.80 pf which assumes 20% of the lamps purchased not installed or returned back to incandescent.

Lifetime

15 years

Measure Costs and Incentive Levels

Description	Unit Incentive	Incremental Cost
LED - Res	\$ 7.00	\$ 35.00

Component Costs and Lifetimes Used in Computing O&M Savings TBD

Reference Tables None

Hawaii Energy

Program Year 4 July 1, 2012 to June 30, 2013

8.3 High Efficiency Air Conditioning

8.3.1 VRF Split System AC

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• Evergreen TRM Review – 2/23/12

TRM Review Actions:

• 10/5/11 - Currently Under Review.

Major Changes:

• n/a

Description: Inverter driven variable refrigerant flow (VRF) air conditioning systems are direct expansion AC systems that utilize variable speed evaporator/condenser fans, and a combination of fixed and variable speed compressors along with most often multiple individual zone evaporators to provide the ability to more closely match the AC system's output with the building's cooling requirements. Savings comes from:

- Part Load Efficiencies: Increased part-load efficiency operation
- High Efficiency Motors: Many systems use ECM motors
- *Higher Room Temperatures*: The capacity matching allows for better humidity control through longer cooling operation.
- *Reduction of Distribution Losses*: Duct losses are reduced with DX systems. This may be offset by dedicated outside air distribution systems when needed.

Payback Qualifications: VRF products need a payback requirement of 1 year or greater. The TRB/TRC must be greater than 1.

Energy and Demand Savings: VRF systems have demonstrated a 20-30% reduction in energy consumption as compared to standard DX equipment. The energy savings and demand tables that follow provide the savings by building type and system size for VRF systems.

The VRF applications have been new construction projects with no ability to perform pre and post measurements. Hawaii Energy will perform field pre and post field measurements to determine the measure effectiveness in the local environment

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms

VRF Split System AC - Single and Multi Family Residential Ho	ome		
Base Case Conventional Room AC Built After 1994			
Average Unit Cooling Capacity		12,000 BTU / Hr	(Equals 1 Ton Cooling Capacity)
Energy Efficiency Ratio	÷	9.8 EER	DOE Federal Test Procedure 10CFR 430, Appendix F
Full Load Demand Conversion		1,224.5 Watts 1,000.0 Watts / kW	
Full Load Demand	Ŧ	1.2 kW	
Conventional Room AC Full Load Demand Honolulu Full Load Equivalent Cooling Hours	×	1.2 kW 5,016.0 Hours per Year	EPA 2002
Conventional Room AC Annual Energy Consumption	~	6,142.0 kWh per Year	
VRF Split System AC Average Unit Cooling Capacity		12,000 BTU / Hr	(Equals 1 Ton Cooling Capacity)
Energy Efficiency Ratio	÷	13.0 EER	Minimum Requirement (AHRI 1230)
Full Load Demand Conversion		923.1 Watts	(Energy Star Criteria = 10.8 EER)
Full Load Demand	÷	1,000.0 Watts / kW 0.9 kW	
VRFSplit AC Full Load Demand Honolulu Full Load Equivalent Cooling Hours		0.923 kW 5,016.0 Hours per Year	EPA 2002
VRF Split Annual Energy Consumption	x	4,630.2 kWh per Year	EFA 2002
		.,	
Conventional Room AC Annual Energy Consumption		6,142.0 kWh per Year	
VRF Split Annual Energy Consumption VRF Split Annual Energy Savings	-	4,630.2 kWh per Year 1,511.9 kWh per Year	
······································		-,	
VRF Split Annual Energy Savings		1,512 kWh per Year	2 307 Single Family Full Load Operating Hours (informati
Single Family Use Factor = Single Family VRF Split AC Annual Energy Savings	x	0.46 695 kWh per Year	2,307 Single Family Full Load Operating Hours (inferred)
VRF Split Annual Energy Savings Multi Family Use Factor	×	1,512 kWh per Year 0.25	1,135 Multi Family Full Load Operating Hours (inferred)
Multi Family Use Factor Multi FamilyVRF Split AC Annual Energy Savings	x	371 kWh per Year	1,135 Multi Family Full Load Operating Hours (merred)
Single Family Use Weighting Multi Family Use Weighting		40%	HECO DSM Docket 2006 - Global Energy Partners HECO DSM Docket 2006 - Global Energy Partners
widit Family Ose weighting		60%	HECO Daw Docket 2000 - Global Energy Pattiers
Single Family VRF Split AC Annual Energy Savings		695 kWh per Year	
Single Family Use Weighting Single Family Savings Contribution to Measure	x	40% 278 kWh per Year	
Single Family Savings Contribution to Measure		278 kwn per Year	
Multi FamilyVRF Split AC Annual Energy Savings		370.5734266 kWh per Year	
Multi Family Use Weighting Multi Family Savings Contribution to Measure	x	60% 222 kWh per Year	
Multin anny Gavings Contribution to Measure		222 KWII per real	
Single Family Savings Contribution to Measure	-	278 kWh per Year	
Multi Family Savings Contribution to Measure	+	222 kWh per Year 501 kWh per Year	
		Sor kumper lear	
De stitute en Eastern		501	400.02/
Persistance Factor =	×	<u> </u>	100.0%
VRF Split AC Energy Savings		501 kWh / Year Savin	gs
Conventional Room AC Full Load Demand		1.224 kW	0.225
VRF Split AC Full Load Demand	-	0.923 kW	0.167
VRF AC Demand Reduction Before Adjustments		0.301 kW	
Single Family			
VRF Split AC Demand Reduction Before Adjustments		0.301 kW	too ov Single Family ACs at between 5 and 0 m
On Peak Demand Coincidence Factor Single Family Demand Savings	x	1.00 cf 0.301 kW	100.0% Single Family ACs on between 5 and 9 p.m.
Single Family Use Weighting	к	40%	
Single Family Savings Contribution to Measure		0.121 kW	
Multi Family			
VRF Split AC Demand Reduction Before Adjustments		0.301 kW	
On Peak Demand Coincidence Factor Multi Family Demand Savings	x	0.74 cf 0.224 kW	74.4% Multi Family ACs on between 5 and 9 p.m.
Multi Family Use Weighting	+	60%	
Multi Family Savings Contribution to Measure		0.135 kW	
Single Family Savings Contribution to Measure		0.12 kW	
Multi Family Savings Contribution to Measure	к	0.12 kW 0.13 kW	
VRF Split AC Measure Demand Savings		0.26 kW	
VRF Split AC Measure Demand Savings	_	0.255 kW	
Persistance Factor	x	<u>1.0</u> pf	100.0% ACs installed and operational at EER Efficiency
		0.26 kW	
Single & Multi Family VRF Split AC Demand Savings		0.26 kW Savings	

Program Year 4 July 1, 2012 to June 30, 2013

8.3.2 Ceiling Fans

Version Date & Revision History Draft date: March 2, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• ENERGY STAR Ceiling Fan Savings Calculator

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

This measure describes the instillation of an ENERGY STAR ceiling fan that uses a high efficiency motor and contains compact fluorescent bulbs in place of a standard fan with integral incandescent bulbs.

Baseline Efficiencies:

The baseline equipment is assumed to be a standard fan with integral incandescent bulbs.

High Efficiency:

The efficient equipment must be an ENERGY STAR certified ceiling fan with integral CFL bulbs.

Energy Savings:

	Average Annual kWh savings per unit	Average Coincident Peak kW savings per unit
2010 - 2013	167	0.019
2014 on	97	0.012

∆kWh

= ((%low * (LowKWbase - LowKWee) + %med * (MedKWbase - MedKWee) + %high * (HighKWbase - HighKWee)) * HOURSfan) + ((IncKW – CFLKW) * HOURSlight * WHFe)

Where:

%low	= Percent of time on Low Speed	= 40%
%med	= Percent of time on Medium Speed	= 40%
%high	= Percent of time on High Speed	= 20%
LowWattbase	= Low speed baseline ceiling fan wattage	= 0.0152 kW
LowWattee	= Low speed ENERGY STAR ceiling fan wattage	= 0.0117 kW
MedWatt base	= Medium speed baseline ceiling fan wattage	= 0.0348 kW
MedWattee	= Medium speed ENERGY STAR ceiling fan wattage	= 0.0314 kW
HighWattbase	= High speed baseline ceiling fan wattage	= 0.0725 kW
HighWattee	= High speed ENERGY STAR ceiling fan wattage	= 0.0715 kW
HOURSfan	= Typical fan operating hours (2.8/day, 365 days per year)	= 1022 hours
IncWatt	= Incandescent bulb kW (assumes 3 * 60W bulb)	= 0.180kW
CFLWatt	= CFL bulb kW (assumes 3 * 20W bulb)	= 0.060kW
HOURSlight	= Typical lighting operating hours (3.5/day, 365 days per year)	= 1277.5 hours
WHFe	= Waste Heat Factor for Energy to account for cooling savings from	
	Efficient lighting.	= 1.07

Program Year 4 July 1, 2012 to June 30, 2013

∆kWh

= ((0.4 * (0.0152 - 0.0117) + 0.4 * (0.0348 - 0.0314) + 0.2 * (0.0725 - 0.0715)) * 1022) + ((0.18 - 0.06) * 1277.5 * 1.07)

= 167 kWh

Baseline Adjustment

Federal legislation stemming from the Energy Independence and Security Act of 2007 will require all general-purpose light bulbs between 40 and 100W to be approximately 30% more energy efficient than current incandescent bulbs, in essence beginning the phase out of standard incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will therefore become bulbs (improved incandescent or halogen) that meet the new standard. To account for these new standards, first year annual savings for this measure must be reduced beginning in 2014. This measure assumes 60W baseline bulbs, which in 2014 will become 43W and so the annual savings beginning in 2014 should therefore be:

ΔkWh	= ((0.4 * (0.0152 - 0.0117) + 0.4 * (0.0348 - 0.0314) + 0.2 * (0.0725 - 0.0715))
	* 1022) + ((0.129 – 0.06) * 1277.5 * 1.07)

= 97 kWh

In addition, since during the lifetime of a CFL, the baseline incandescent bulb will be replaced multiple times, the annual savings claim must be reduced within the life of the measure. Therefore, for bulbs installed in 2010, the full savings (167kWh) should be claimed for the first four years, but the reduced annual savings (97kWh) claimed for the remainder of the measure life. The savings adjustment is therefore equal to 97/167 = 58%.

Coincident Peak Demand Savings

ΔkW	= (%low * (LowKWbase - LowKWee) + %med * (MedKWbase - MedKWee) + %high * (HighKWbase - HighKWee)) + ((IncKW – CFLKW) * WHFd) * CF
Where:	(Highkwbase - Highkwee)) + ((Inckw – CFLKW) WHFu) CF
WHFd	= Waste Heat Factor for Demand to account for cooling savings from efficient lighting = 1.21
CF	Peak Coincidence Factor for measure= 0.11
ΔkW	= ((0.4 * (0.0152 – 0.0117) + 0.4 * (0.0348 – 0.0314) + 0.2 * (0.0725 – 0.0715)) + ((0.18 – 0.06) * 1.21) * 0.11
ΔkW	= 0.019kW
After 2014, this	will be reduced to:
ΔkW	= ((0.4 * (0.0152 - 0.0117) + 0.4 * (0.0348 - 0.0314) + 0.2 * (0.0725 - 0.0715))

1

+ ((0.129 – 0.06) * 1.21)	* 0.1
---------------------------	-------

∆kW = **0.012kW**

Operating Hours

See Table above.

Program Year 4 July 1, 2012 to June 30, 2013

Loadshape TBD

Freeridership/Spillover Factors TBD

Lifetime 5 years (DEER)

Measure Costs and Incentive Levels

Description	Unit	Incentive	Incr	emental Cost
Ceiling Fan	\$	40.00	\$	86.00

Component Costs and Lifetimes Used in Computing O&M Savings TBD

Program Year 4 July 1, 2012 to June 30, 2013

8.3.3 Solar Attic Fans

Version Date & Revision History Draft date: March 2, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description: Solar attic fan is assumed to reduce 10% of existing air conditioning load energy usage and no demand reduction from 5PM – 9PM.

Baseline Efficiencies:

The baseline case is no solar attic fan.

Base Case	Demand Baseline (kW)	Energy Baseline (kWh/year)
No Solar Attic Fan	1.00	5,016

High Efficiency:

High Efficiency Case	Efficient Case (kW)	Efficient Case (kWh/year)
Solar Attic Fan	1.00	4,514

Energy Savings:

Savings Type	Gross Customer Savings (kW)	Gross Customer Savings (kWh/year)
Gross Savings	0.00	502
Operational Factor Persistence Factor (pf) Demand Coincidence Factor (cf)	0.	ent Factor 00 00
Savings Type	Net Customer Savings (kW)	Net Customer Savings (kWh/year)
Net Savings	0.000	502

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms

Solar Attic Fan - Single Family Residential Home	
Energy Star Room AC Full Load Demand Honolulu Full Load Equivalent Cooling Hours Energy Star Room AC Annual Energy Consumption	1.0kWx5,016Hours per Year5,016kWh per Year
Energy Reduction Percentage with Solar Attic Fan Energy Usage with Solar Attic Fan	10.0% 4,514 kWh / Year Savings
Energy Star Room AC Annual Energy Consumption Energy Usage with Solar Attic Fan Solar Attic Fan Annual Energy Savings	5,016 kWh / Year Savings - 4,514 kWh / Year Savings 502 kWh / Year Savings
Solar Attic Fan Annual Energy Savings Persistance Factor Net Customer Level Savings	502kWh / Year Savingsx1.0502kWh / Year Savings
Solar Attic Fan Energy Savings	502 kWh / Year Savings
Energy Star Room AC Full Load Demand	1.00 kW
Peak Demand Reduction	0%
AC Demand with Solar Attic Fan	1.00 kW
Energy Star Room AC Full Load Demand AC Demand with Solar Attic Fan Gross Customer Demand Savings	1.00 kW - 1.00 kW - kW
Solar Attic Fan Demand Savings	0.000 kW Savings
Operating Hours See Table above.	
Loadshape TBD	

Freeridership/Spillover Factors TBD

Persistence 1.0

Lifetime 5 years

Measure Costs and Incentive Levels

Incentive = \$50/unit

Program Year 4 July 1, 2012 to June 30, 2013

8.3.4 Whole House Fans

Version Date & Revision History Draft date: March 2, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- KEMA for the Sate of California Low-Income Energy Efficiency Program; calmac.org/publications/2001_LIEE_Impact_Evaluation.pdf
- Evergreen TRM Review 2/23/12

TRM Review Actions:

- 4/9/12 Energy reduction percentage changed from .25 to .2 as per the EM&V report dated 23 Feb 2012. Added reference document from EM&V report.
- 10/5/11 Currently Under Review.

Major Changes:

• n/a

Measure Description:

Baseline Efficiencies:

Base Case	Demand Baseline (kW)	Energy Baseline (kWh/year)
No Whole House Fan	1.00	5,016

High Efficiency:

High Efficiency Case	Efficient Case (kW)	Efficient Case (kWh/year)
Whole House Fan	0.15	3,762

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings:

Savings Type	Gross Customer Savings (kW)	Gross Customer Savings (kWh/year)
Gross Savings	0.85	1,254

Operational Factor	Adjustment Factor
Persistence Factor (pf)	1.00
Demand Coincidence Factor (cf)	0.59

Savings Type	Net Customer Savings (kW)	Net Customer Savings (kWh/year)
Net Savings	0.50	1,254

Savings Algorithms

Whole House Fan - Single Family Residential Home

Energy Star Room AC Full Load Demand Honolulu Full Load Equivalent Cooling Hours Energy Star Room AC Annual Energy Consumption	1.0 kW x 5,016 Hours per Year 5,016 kWh per Year
Energy Reduction Percentage with Whole House F	ian 20.0%
Energy Usage with Whole House Fan	4,013 kWh / Year Savings
Energy Star Room AC Annual Energy Consumption	5,016 kWh / Year Savings
Energy Usage with Whole House Fan	- 4,013 kWh / Year Savings
Solar Attic Fan Annual Energy Savings	1,003 kWh / Year Savings
Solar Attic Fan Annual Energy Savings	1,003 kWh / Year Savings
Persistance Factor	<u>x 1.0</u>
Net Customer Level Savings	1,003 kWh / Year Savings
Whole House Fan Energy Savings	1,003 kWh / Year Savings
Energy Star Room AC Full Load Demand	1.00 kW
Whole House Fan Demand	- 0.15 kW
Gross Customer Demand Reduction	0.85 kW
Gross Customer Demand Reduction	0.850 kW
Gross Customer Demand Reduction	0.850 kW
Persistence Factor	1.000
Coincedence Factor	x 0.590
Net Whole House Fan Demand Savings	0.50 kW Savings

Operating Hours

See Table above.

Loadshape TBD

IBD

Freeridership/Spillover Factors TBD

Program Year 4 July 1, 2012 to June 30, 2013

Persistence/Coincidence Factor

Operational Factor	Adjustment Factor
Persistence Factor (pf)	1.00
Demand Coincidence Factor (cf)	0.59

Lifetime

5 years

Measure Costs and Incentive Levels

Description	Incentive	Incremental Cost
Whole House Fans	\$ 75.00	\$ 1,000.00

Program Year 4 July 1, 2012 to June 30, 2013

8.4 High Efficiency Appliances

8.4.1 Energy Star Clothes Washer & Refrigerator

Measure ID: See Table 7.3

Version Date & Revision History Draft date: February 24, 2010 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- HECO DSM Docket Backup Worksheets Global Energy (07-14-06)
- Econorthwest TRM Review 6/23/10
- Department of Energy Refrigerator Profile Updated December 2009

TRM Review Actions:

- 6/23/10 Rec. # 11 Revise savings to be consistent with ENERGY STAR estimates. Adopted with modifications on refrigerator figures based on DOE Refrigerator profile and the addition of bounty, recycle with new figures.
- 6/23/10 Rec. # 12 Split the claimed savings by appliance. Adopted.
- 6/23/10 Rec. # 13 Incorporate solar hot water heating into appliance savings values Adopted.
- 6/23/10 Rec. # 14 Revise demand savings values for ENERGY STAR appliances Adopted.
- 10/4/11 Removed dishwashers from appliance list.
- 4/9/12 Baseline efficiency for non-ES Refrigerator changed from 537 to 540. Number changed to match ES data.
- 10/5/11 Currently Under Review.

Major Changes:

- Split between ESH appliances
- Incorporation of three refrigerator categories (new, new with turn in, and bounty (turn in only))

105 kWh. .017 kW

- All ESH 313 kWh and 0.12 kW changed to:
 - New ES Refrigerator Only –

0	New ES Refrigerator with Turn-In –	822 kWh, .034 kW
0	Bounty (Turn in only) –	859 kWh, .034 kW
0	Washing Machine –	206 kWh, .028 kW

Measure Description:

The replacement of standard Clothes Washers and Refrigerators in Residential Single Family and Multifamily homes.

Appliances must comply with:

Energy Star

Refrigerators – ENERGY STAR refrigerators utilize improvements in insulation and compressors.

Clothes Washers – Clothes washers that meet ENERGY STAR criteria use next generation technology to cut energy and water consumption by over 40% compared to conventional washers. Clothes washers come in either front-load or redesigned top-load designs. Both configurations include technical innovations that help save substantial amounts of energy and water.

 No Central Agitator Front-loaders tumble clothes through a small amount of water instead of rubbing clothes against an agitator in a full tub. Advanced top loaders use sophisticated wash systems to flip or spin clothes through a reduced stream of water. Both designs dramatically reduce the amount of hot water used in the wash cycle, and the energy used to heat it.

Program Year 4 July 1, 2012 to June 30, 2013

• **High Spin Speeds** Efficient motors spin clothes two to three times faster during the spin cycle to extract more water. Less moisture in the clothes means less time and energy in the dryer.

Baseline Efficiencies:

Baseline energy usage based on 2009 Energy Star Information for the appliances are as follows:

	Demand Baseline (kW)	Energy Baseline (kWh)	Notes
Non ES Qualifying Refrigerator		540	19.0-21.4 Top Freezer
Non ES Qualifying Clothes Washer		787	392 Loads per Year

High Efficiency:

The high efficiency case Energy Star energy usage based on 2009 Energy Star Calculator Information and DOE Refrigerator Market Profile for the appliances is as follows:

	Demand High Efficiency (kW)	Energy High Efficiency (kWh)	Notes
ES Qualifying Refrigerator		435	19.0-21.4 Top Freezer
ES Qualifying Clothes Washer		563	392 Loads per Year

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings:

Energy Star Appliance Gross Savings before operational adjustments:

	Demand Savings (kW)	Energy Savings (kWh)
ES Refrigerator	0.017	105
ES Refrigerator with Turn-In	0.034	822
Bounty (Turn in only)	0.034	859
ES Washing Machine	0.028	206

Energy Star Appliance Net Savings operational adjustments:

Operational Factor	Adjustment Factor
Persistence Factor (pf)	1.0
Demand Coincidence Factor (cf)	1.0

Savings Algorithms

Energy Star Dishwasher & Clothes Washers - Single and Multi Family Residential Home

Based on DOE/EPA Energy Star Calculator and Econorthwest adjustment factor

	Standard Efficiency (kWh)	Energy Star Qualified (kWh)	Energy Savings	Solar Water Heater Penetration Adjustment Factor	Claimed Energy	Notes
ES Qualifying Clothes Washer	787	563	224	92%	206	392 Loads per Year

Program Year 4 July 1, 2012 to June 30, 2013

Energy Star Refrigerator and Turn In Refrigerator - Single and Multi Family Residential Home

Opportunity	Energy L	Jsage	
New Non-ENERGY STAR		540	Table 2
New ENERGY STAR Refrigerator		435	Table 2
		105 kWh/Y	ear Table 1
#1 - Purchase of ENERGY STAR Refrigerator		105	Table 1
#2 - Removal of Old Unit from Service (off the grid)	+	717	Table 1
<pre>#1 + #2 = Purchase ES and Recycle old unit</pre>		822 kWh/Y	ear

	Energy Usage	Ratio	Contribution	
Post-1993 Refrigerator	640	55%	354.54	Table 3
Pre-1993 Refrigerator	1,131	45%	504.46	Table 3
			859	- kWh/Year

Table 1

Energy Savings Opportunities for Program Sponsors

	Annual Savings				
Opportunity	Per	Unit	Aggregate U.S. Potential		
	kWh	\$	MWh	\$ million	
 Increase the number of buyers that purchase ENERGY STAR qualified refrigerators. 9.3 million units were sold in 2008. 70 percent were not ENERGY STAR. 6.5 million potential units per year could be upgraded. 	105	11.64	675,928	75	
 Decrease the number of units kept on the grid when new units are purchased. 8.7 million primary units were replaced in 2008. 44 percent remained in use, whether they were converted to second units, sold, or given away. 3.8 million units are candidates for retirement every year. 	717	79.53	2,746,062	305	
 3. Decrease the number of second units. 26 percent of households had a second refrigerator in 2008. 29.6 million units are candidates for retirement. 	859	95.28	25,442,156	2,822	
 Replace pre-1993 units with new ENERGY STAR qualified models. 19 percent of all units in use in 2008 were manufactured before 1993. 27.3 million total potential units are candidates for targeted replacement. 	730	81	19,946,440	2,212	

Program Year 4 July 1, 2012 to June 30, 2013

Table 2

Energy and Cost Comparison for Upgrading to ENERGY STAR

Purchase Decision	New Non-ENERGY STAR Qualified Refrigerator	New ENERGY STAR Qualified Refrigerator	
Annual Communities	540 kWh	435 kWh	
Annual Consumption	\$60	\$48	
	_	105 kWh	
Annual Savings	-	\$12	
Average Lifetime	12 years	12 years	
	-	1,260 kWh	
Lifetime Savings	_	\$140	
Price Premium	-	\$30 - \$100	
Simple Payback Period	_	3-9 years	

Note: Calculations based on shipment-weighted average annual energy consumption of 2008 models. An ENERGY STAR qualified model uses 20 percent less energy than a new non-qualified refrigerator of the same size and configuration.

Source: See endnote 10.

Table 3

Energy and Cost Comparison for Removing a Second Refrigerator from the Grid

	Post-19	93 Unit	Pre-1993 Unit		
Fate of Unit	Remains on the Grid	Removed from the Grid	Remains on the Grid	Removed from the Grid	
Annual Consumption	640 kWh	-	1,131 kWh	-	
Annual Consumption	\$71	-	\$125	-	
Appuel Cavinge	-	640 kWh	-	1,131 kWh	
Annual Savings	-	\$71	-	\$125	
Average Lifetime*	6	-	6	-	
Lifetime Cavings	-	3,840 kWh	-	6,788 kWh	
Lifetime Savings*	-	\$426	-	\$753	
Removal Cost	-	\$50 - \$100	-	\$50 - \$100	
Simple Payback Period	-	1-2 years	-	<1 year	

*Assumes unit has six years of functionality remaining.

Sources: See endnote 10.

Program Year 4 July 1, 2012 to June 30, 2013

Operating Hours Refrigerators = 8,760 hours per year Clothes Washers = 392 Loads per Year

Loadshape

TBD

Freeridership/Spillover Factors TBD

Demand Coincidence Factor NA

Persistence NA

Lifetime (DEER) 11 years for clothes washer (DEER) 14 years for refrigerator

Measure Costs and Incentive Levels

Residential Measure Costs and Incentive Levels

Description	Unit Incentive	Incremental Cost HECO DSM Docket 2006	Incremental Cost Energy Star 2009
ES Refrigerator	\$50	\$ 60.36	\$65
ES Clothes Washer	\$50	\$ 398.36	\$ 258

Component Costs and Lifetimes Used in Computing O&M Savings TBD

Water Descriptions

	Base Water Usage (Gallons)	High Efficiency Water Usage (Gallons)	Water Savings (Gallons)	Notes
Refrigerator	n/a	n/a		19.0-21.4 Top Freezer
Clothes Washer	12,179	5,637	6,542	392 Loads per Year

Reference Tables
None

Program Year 4 July 1, 2012 to June 30, 2013

8.4.2 Pool VFD Controller Pumps

Version Date & Revision History Draft date: February 24, 2010 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Davis Energy Group (2008). Proposal Information Template for Residential Pool Pump Measure Revisions. Prepared for Pacific Gas and Electric Company; Page 2.
- Residential Retrofit High Impact Measure Evaluation Report. The Cadmus Group. February 8, 2010.

TRM Review Actions:

- 4/9/12 Measure updated per EMV report February 23, 2012. Coincidence Factor of .0862 added. Added algorithm for Evergreen with 4.25 hours in place of 6 hours per day. Added Cadmus Group reference.
- 10/5/11 Currently Under Review.

Major Changes:

• n/a

Measure Description

A variable speed residential pool pump motor in place of a standard single speed motor of equivalent horsepower.

Definition of Efficient Equipment

The high efficiency equipment is a variable speed residential pool pump.

Definition of Baseline Equipment

The baseline efficiency equipment is assumed to be a single speed residential pool pump.

$$\Delta$$
kWh = (kWBASE × Hours) × 55% BASE

Where:

Unit	= variable speed pool pump
ΔkWh	= Average annual kWh reduction
Hours	= Average annual operating hours of pump
kWBASE	= connected kW of baseline pump
55%	= average percent energy reduction (Davis Energy Group, 2008)

Baseline Efficiency

The baseline efficiency case is a single speed pump.

Based Demand	0.70 kW
Base Energy Usage per day	2.97 kWh/day
Base Energy Usage per year	1085 kWh/year

Program Year 4 July 1, 2012 to June 30, 2013

High Efficiency

The high efficiency case is variable speed pump.

Demand Reduction	10%
High Efficiency Demand	0.63 kW
Energy Savings	55%
High Efficiency Energy Usage	488 kWh/year

Energy and Demand Savings

Demand Savings	1.278 kW
Coincidence Factor	0.0862 kW

Energy Savings per year	597 kWh/year
Peak Demand Reduction	0.006 kW

Savings Algorithm

Average Pool Pump Horesepower	0.75 HP
Efficiency	0.8
Hours of operation per day	4.25 hours
Number of days pool in use	365 days per year
1 HP Equals	0.746 kW
Based Demand	0.70 kW
Base Energy Usage per day	2.97 kWh/day
Base Energy Usage per year	1085 kWh/year
Demand Reduction	10%
High Efficiency Demand	0.63 kW
Energy Savings	55%
High Efficiency Energy Usage	488 kWh/year
Demand Savings	1.278 kW
Coincidence Factor	0.0862 kW
Energy Savings per year	597 kWh/year
Peak Demand Reduction	0.006 kW

Lifetime of Efficient Equipment

The estimated useful life for a variable speed pool pump is 10 years.

Measure Cost

The incremental cost is estimated to be \$750 for a variable speed motor

Incentives \$150/unit

Program Year 4 July 1, 2012 to June 30, 2013

8.5 Energy Awareness, Measurement and Control Systems

8.5.1 Room Occupancy Sensors

Version Date & Revision History Draft date: March 2, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

Flex your Power – "Occupancy sensors can reduce lighting costs by up to 50% in rooms where lights are frequently left on when on one is around."

According to the Federal Energy Management Program (FEMP) of the US Department of Energy, in a small, private office, an occupancy sensor can reduce energy use by almost 30% shaving 100kWh off the annual energy use. In a large open office area, energy use can be reduced by approximately 10%.

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

This measure is for wall switch sensors that controls the use of lighting in areas around the home with variable use such as laundry, storage, garage, bedrooms or spare areas.

Occupancy sensors must comply with:

- Energy Star
- UL Listing

Baseline Efficiencies:

The base case is an even split between two (2) 60W A-Shaped incandescent lamp and 15W Compact Fluorescent Lamp with the energy consumption as follows:

Lamp Types	Demand Baseline (kW)	Hours per Day	Energy Baseline (kWh/year)	%	Totals
Incandescent	0.060	2.30	50.4	50%	25.2 kWh
CFL	0.015	2.30	12.6	50%	6.3 kWh

Watts per Lamp 31.5 W

Lamps 2

Total Baseline Energy (kWh) 63.0 kWh

Program Year 4 July 1, 2012 to June 30, 2013

High Efficiency:

The high efficiency case is 33% run time reduced.

Lamp Types	Demand Baseline (kW)	Hours per Day	Energy Baseline (kWh/year)	%	Totals
Incandescent	0.060	1.54	33.7	50%	16.9 kWh
CFL	0.015	1.54	8.4	50%	4.2 kWh
			Watts	per Lamp	21.1 W
				Lamps	2
		Total H	ligh Efficiency Ene	rgy (kWh)	42.2 kWh

Energy Savings:

Total Baseline Energy (kWh) 63.0 kWh Total High Efficiency Energy (kWh) 42.2 kWh 20.8 kWh

Savings Algorithms

Two (2) - Lamp Demand		0.075	kW	Even split between 60W Incand. and 15W CF
			Hours per Day	
	x		Days	839.5 Hours per Year
Baseline Energy Usage			kWh per Year	
Run Time Reduced (RTR)		0.76	Hours per Day	33%
			kWh per Year	
	x	0.330 20.8	kWh per Year	33% Run Time Reduced
Energy Savings		20.8	kWh / Year Savings	
Two Lamp Demand Reduction Before Adjustments		0.075	kW	
Demand Reduction Before Adjustments		0.038	kW	
Coincidence Factor		0.120	cf	12.0% Lamps on between 5 and 9 p.m.
Persistance Factor	х	1.000	pf	100.0%
	C	.0046	kW	
Demand Savings	0	.0046	kW Savings	

Operating Hours 2.3 hours per day

Loadshape

Program Year 4 July 1, 2012 to June 30, 2013

Freeridership/Spillover Factors TBD

Coincidence CF = 0.12 (12% lamps on between 5PM – 9PM)

Persistence PF =1.0

Lifetime 8 years (DEER)

Measure Costs and Incentive Levels

Incentive = \$5

Component Costs and Lifetimes Used in Computing O&M Savings TBD

Reference Tables
None

Program Year 4 July 1, 2012 to June 30, 2013

8.5.2 Peer Group Comparison

Version Date & Revision History Draft date: September 18, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- <u>Study 1 Environmental Defense Fund: Behavior and Energy Savings (Matt Davis) 2011</u> Reports sent to a random subset of customers are shown to reduce energy demand by **1.8%** on average, with the effectiveness of individual programs ranging from 0.9% to 2.9%.
- <u>Study 2 Navigant Consulting Evaluation Report: OPOWER SMUD Pilot Year2 (February 20, 2011)</u> OPOWER is pleased to share the latest analysis of the nation's longest running behavioral energy program, our 35,000 household Home Energy Report deployment with Sacramento Municipal Utility District (SMUD). The analysis was led by Bill Provencher, Associate Director of the Navigant Consulting Energy Practice, and reviews data from April 2008 to October 2010. Navigant confirms the persistence, and even increase, of savings over the program's lifetime. The key findings of the updated report are:
 - Year 1 savings = **2.25%**
 - Year 2 savings = 2.89%, a 22% increase over Year 1
 - Highest savings occur during the peak season: 3.56% savings in July and August of 2009
 - No sign of impact deterioration over 30 months
- <u>Study 3 DBEDT / ARRA Hawaii Energy Residential Peer Group Pilot Program</u> This program was implemented in 2011 for 15,000 participants with 10,000 control group. The energy savings results for the program to date are as follows:
 - o April 2011: 0.60%
 - o May 2011: 1.10%
 - o June 2011: 1.37%
 - o August 2011: 1.50%
 - Average YTD: 1.14%

TRM Review Actions:

- Continue to monitor participant vs control group energy usage comparison.
- 10/5/11 Currently Under Review.

Major Changes:

- New PBFA 100% funded program.
- 11/22/11 Removed detailed table from *Energy Savings* heading not pertinent information.

Measure Description:

The Behavior/Feedback programs send monthly energy use reports to participating electric customers in order to change customers' energy-use behavior. These reports rank the customers within a group of 100 similar sized homes in their neighborhood. Customers are also directed to a website with energy efficient tips and recommendations on energy conservation.

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings

The unit energy savings of 1.73% is deemed based on study results, forecasting and prior OPOWER program performances.

Peer Group - First Year Perfor	
Study 1	1.80%
Study 2	2.25%
Study 3	1.14%
Average	1.73%

Example Algorithm Calculating Customer Level Impact

∆kWh	= (Total Monthly Base Energy Usage)(# of Participating Months)(%Savings)
∆kW	= Annual ∆kWh per Unit/ 3000 hours
Where: Unit	= One participant household

%Savings = Energy savings percent per program participant

Baseline Efficiency

The baseline efficiency case is the control group that does not receive behavior and feedback program reports.

High Efficiency

The high efficiency case is 60,000 active participants for the period from December 1, 2011 until June 30, 2012 who receives a behavior and feedback program report.

- 30,000 designated customers on Maui, Lanai and Molokai, with an effort to maximize the number of customers on Lanai and Molokai.
- 30,000 designated customers on the island of Hawaii.

Persistence

1 year

Measure Life

1 year

Program Year 4 July 1, 2012 to June 30, 2013

8.5.3 Whole House Energy Metering

Version Date & Revision History Draft date: March 2, 2011 Effective date: July 1, 2012

End date: June 30, 2013

Referenced Documents:

- Hawaii Energy Historic Utility Billing Research Residential Review 2010
- Evergreen TRM Review 2/23/12

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

Hawaii Energy

• Changed energy savings from 2% to 3.8% based on EM&V Review.

Measure Description:

Whole house metering systems allow the occupant to see in real time the energy usage in their home. This "dashboard" allows them to see what actions and equipment drive their energy usage and the associated costs of running them. These devices collect energy data for the whole house at the panel and transmit the information to a display unit "dashboard" which can be located anywhere in the house.

Baseline Efficiencies:

	Demand	Energy
Building	Baseline	Baseline
Types	(kW)	(kWh/year)
No Metering	1.50	12,000

High Efficiency:

		Efficient
Building	Efficient Case	Case
Types	(kW)	(kWh/year)
Whole House Meter	1.47	11,544

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings:

	Gross	Gross
	Customer	Customer
Building	Savings	Savings
Types	(kW)	(kWh/year)
Gross Customer Savings	0.03	456

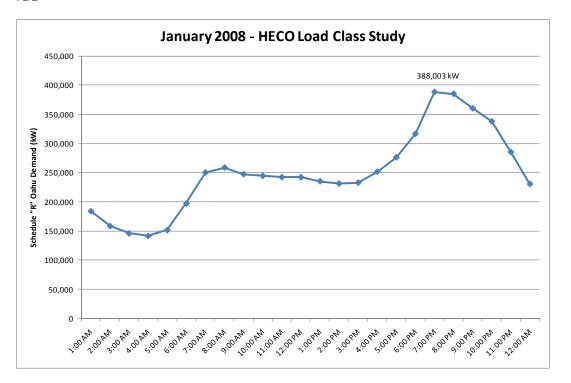
Operational Factor	Adjustment Factor
Persistence Factor (pf)	0.90
Demand Coincidence Factor (cf)	0.30

	Net	Net
	Customer	Customer
Building	Savings	Savings
Types	(kW)	(kWh/year)
Net Customer Savings	0.01	410

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms

Whole House Metering - Single Multi Famil	<mark>y Residential Hom</mark>	e	
High Energy Usage Home (85th percentile)	1,000	kWh per home per month	Hawaii Energy review - HECO 2010 Data
	x 12	_	
Baseline Household Energy Usage	12,000	kWh per Year	
Energy Reduction	3.8%		
Actively Informed Household Energy Usage	11,544	kWh per Year	
, , , ,	,	·	
Baseline Household Energy Usage	12,000	kWh per Year	
Actively Informed Household Energy Usage	- 11,544	kWh per Year	
Gross Customer Level Energy Savings	456	kwh per Year	
	x 1,000	Watts per kW	
	÷ 8,760	Hours per Year	
Average 24/7 Demand Reduction	52	Watts	
Gross Customer Level Energy Savings	456	kwh per Year	
Persistance Factor		kwii per tear	
		- kwh per Year	
Net Customer Level Savings	410	kwii per fear	
Whole House Metering Energy Savings	410	kWh / Year Savings	
Baseline Household Demand	1.50	kW	HECO 2008 Load Study
Peak Demand Reduction	1.75%		
Actively Informed Household Demand	1.47	kW	
Baseline Household Demand	1.50	kW	
Actively Informed Household Demand	- 1.47	kW	
Gross Customer Demand Savings	0.026	kW	
Gross Customer Demand Savings	0.026		
Persistance Factor	x 0.90		
Coincidence Factor	x 0.30		
	0.007	' kW	
Whole House Metering Demand Savings	0.007	kW Savings	
	5.007		



Program Year 4 July 1, 2012 to June 30, 2013

Operating Hours

8,760 hours per year

Loadshape TBD

Freeridership/Spillover Factors 0.73

Persistence Factor PF = 0.9

Coincedence Factor CF= 0.3

Lifetime 4 years

Measure Costs and Incentive Levels

	Low	High
Measure Cost	\$100	\$450
Incremental Cost	\$100	\$450

Incentive Level

50% up to \$100

Hawaii Energy - Technical Reference Manual No. 2012 Program Year 4 July 1, 2012 to June 30, 2013

9 (CESH) Custom Energy Solutions for the Home

9.1 Target Cost Request for Proposals

9.1.1 Custom Packaged Proposals

Version Date & Revision History Draft date: October 4, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

This program will target the contractor/home auditors/energy vendors and encourage them to develop cost-effective projects that focus on high energy consumption homes. The program will be a call for projects that meet a total dollar per kWh savings target and allow the market to be creative in the actions and measures that achieve the targeted cost per kWh energy savings.

The projects will use utility metered data and submetered if required to insure savings performance.

Incentive = \$0.30/kWh Target Goal = 35,000 kWh

Hawaii Energy - Technical Reference Manual No. 2012 Program Year 4 July 1, 2012 to June 30, 2013

10 (RESM) Residential Direct Installation

10.1 Residential Direct Installation

10.1.1 Real Time Metering

Version Date & Revision History Draft date: Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

This program will be implemented to target residential properties that can influence the energy usage. A whole house meter will be installed by either a grassroots organization or a participating electrical contractor. After meter installation,

Energy Savings:

Meter data will not be shared with customers for the first month of operation to obtain baseline energy usage. After one month of operation, will be encouraged to take actions to reduce energy consumption and will have access to meter data.

Savings Algorithms

Program Year 4 July 1, 2012 to June 30, 2013

10.2 Residential Design and Audits

10.2.1 Efficiency Inside (New Home Construction Incentive)

Measure Code: Efficiency Inside

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Description: This measure provides developers with financial, technical and other assistance to promote the

construction of homes that require the least amount of air conditioning to meet customer demands. It is assumed that all new homes will have Solar Water Heating, Energy Star Appliances, and CFLs. The components are:

Energy Model Review – Used to compare the projected home performance as compared to an IECC

2006 built home. At least 6 scenarios must be modeled (IECC 2006, Proposed Home, Proposed with

Cool Roof, Proposed with 4.0 ACH @ 50Pa, Proposed other energy feature, Proposed home with all

modeled features).

Construction Quality Control (CQC) – Mandatory inspections of a sampling of units during construction

to insure best construction practices are used to maximize design and to encourage field improvements. (Sampled)

 Performance Testing (PT) – A sampling of units tested to document the final result of the design and

building practices.

 Whole House Metering System – Permanent devices to support home owner energy awareness and porsistence of savings

persistence of savings.

Savings comes from:

- Lower Cooling Loads: Through design and construction techniques.
- *Right Sizing of AC Systems*: Selection of smaller ACs match energy models load determination.
- *Energy Use Awareness*: Home equipped with metering will have greater user awareness that will drive energy use behavior.

Energy and Demand Savings: It is expected that the best built homes systems will provide a 20-30% reduction in energy consumption as compared to IECC 2006 code built homes. Net zero homes will provide 100% reductions.

Program Year 4 July 1, 2012 to June 30, 2013

- *Energy Modeling*: Energy savings will be determined through the cooling reductions modeled. This will be a combination of the construction and AC equipment selection.
- *Net Zero*: Net zero homes with PV are allowed and the predicted PV system output will be included in energy savings.

Sample New Home Construction Worksheet

Efficiency Inside - Hawaii Energy New Residential Home Construction Incentive Program

Contractor	Project	Туре	Units	Start	End	Modeled Scenarios	Scenario Energy Usage (kWh/year)	Over Baseline Savings (kWh/year)	Quality Inspections	Performance Tested	Adopted Recommendations	Solar Thermal	Energy Star Appl.	CFLs	Per Unit Incentive	Total Incentive	Project Status
GC Pacific	60 Parkside	Multi	60	Oct-2011	Jun-2011	1. Baseline - IECC 2006			20%	20%					\$450	\$27,000	Approved 3
					[2. Energy Star Roof											Modeled
					[3. Insulation / HP Window options											Inspected
					[4. Air tightness (4.0 @ 50 pa)											Tested
					[5. AC Equipment Sizing & Technology											M&V
						6. As Constructed		2,400									Paid
Gentry Pacific		Single	120	Oct-2011	Jun-2011	1. Baseline - IECC 2006			20%	20%					\$600	\$72,000	Approved
						2. Energy Star Roof											Modeled
					[3. Insulation / HP Window options											Inspected
						4. Air tightness (4.0 @ 50 pa)											Tested
						5. AC Equipment Sizing & Technology											M&V
						6. As Constructed		3,200									Paid
Haseko		Single	120	Oct-2011	Jun-2011	1. Baseline - IECC 2006			20%	20%					\$600	\$72,000	Approved
						2. Energy Star Roof											Modeled
						3. Insulation / HP Window options											Inspected
						4. Air tightness (4.0 @ 50 pa)											Tested
						5. AC Equipment Sizing & Technology											M&V
						6. As Constructed		2,200									Paid
DHHL		Single	19	Oct-2011	Jun-2011	1. Baseline - IECC 2006			20%	20%					\$600	\$11,400	Approved
						2. Energy Star Roof											Modeled
						3. Insulation / HP Window options											Inspected
						4. Air tightness (4.0 @ 50 pa)											Tested
						5. AC Equipment Sizing & Technology											M&V
						6. As Constructed		15,000									Paid
Totals			319	units				5,700	kWh/yr. pe	er home redu	ction					\$182,400	

Program Year 4 July 1, 2012 to June 30, 2013

10.2.2 Hawaii Energy Hero Audits

Measure Code: Efficiency Inside

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• Evergreen TRM Review – 2/23/12

TRM Review Actions:

• 10/5/11 - Currently Under Review.

Major Changes:

- 11/22/11 Akamai Power Strip kWh savings updated based on NYSERDA Measure Characterization for Advanced Power Strips. – NO LONGER RELEVANT.
- 4/17/12 Removed gift pack information/data. Updated measure to match energy audit measure under "Residential Hard to Reach" in order to make savings consistent with an energy audit. This change was a complete revamp of the entire measure and did changed expected savings.

Measure Description:

- Work with grass roots organization(s) to develop a residential educational presentation and a high level household energy audit based on use of a Belkin Conserve Insight or Kill-A-Watt style single outlet energy monitor.
- Identify individuals/homes who accept participation in the program with an energy challenge commitment to reduce energy consumed within their household.
- Participants will receive the energy monitor and possibly other energy savings devices for the purpose of performing the energy audit, applying energy savings devices and achieving energy savings.
- Provide the energy monitors and possibly other energy savings devices along with funds to the grass roots organizations. The organizations will distribute energy monitors and devices, provide training to recipient households and perform a high level audit with selected individuals.

Energy Savings:

Monthly Usage	625			
Percent Savings	4%			
Hours per Year	8760			

Savings	Energy Savings (kWh)	Demand Savings (kW)
Monthly Savings	25	0.0029
Yearly Savings	300	0.0342

Measure Costs and Incentive Levels

Incentive = \$100

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithm

Refer to TRM Compact Fluorescent Lighting (CFL) Section

Akamai Power Strips			
Savings per Unit	56.5 kWh	102.8 kWh	NYSERDA Measure Characterization for
Plugs per Unit	5 plugs	7 plugs	Advanced Power Strips
Savings per Plug	11.3 kWh/plug	14.68571 kWh/plug	
Average Savings per Plug		13.0 kWh	
	х	6 plugs/unit	_
Akamai Power Strip Energy Savings		78 kWh per Unit first yea	r
Hours of Operation		8760 hours/year	_
Demand Savings		0.0089 kW	
First Year Savings		78 kWh first year	
Measure Life	х	5 year measure life	
Lifetime Savings	3	89.78571 kWh lifetime	
Total Resource Cost	Ś	30.96	
Total Resource Benefit	÷ \$	46.15	
Total Resource Cost Ratio	<u> </u>	1.5 TRB Ratio	
Potential Akamai Power Strip Incentive	Ś	7.00	
First Year Savings	÷	66 kWh first year	
0	\$	0.11 per kWh first year	
Standard Power Strip Cost	Ś	14.49	
Akamai Power Strip Cost	- \$	30.96	
Incremental Akamai Power Strip Cost	\$	16.47	
Incremental Akamai Power Strip Cost	\$	16.47	
Potential Akamai Power Strip Incentive	÷ \$	7.00	
Percentage of Incremental Cost		43%	
Akamai Power Strip Cost	\$	30.96	
Potential Akamai Power Strip Incentive	÷_\$	7.00	
Percentage of Customer Measure Cost		23%	

Program Year 4 July 1, 2012 to June 30, 2013

10.3 Residential System Tune-Ups

10.3.1 Central AC Tune Up

Measure ID: See Table 7.3

Version Date & Revision History Draft date: February 21, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• Evergreen TRM Review – 2/23/12

TRM Review Actions:

• 10/5/11 - Currently Under Review.

Major Changes:

- Split Systems addition to central systems for AC tune-up
- Reduced savings percentage from 20% to 8% based on EM&V review.

Measure Description:

- Demonstrate the benefits of tune-ups
- Educate customer of potential savings and system longevity
- Utilize the participating contractors to contact the customers and have them arrange for the service work
- Participating contractors will use the Hawaii Energy Checklist to inspect and record the pre and post conditions
- Participating contractor's invoice must show that checklist requirements have been met and signed by the servicing technician
- Customers can have two incentives per location annually

Baseline Efficiencies:

Building Types	Demand Baseline (kW)	Energy Baseline (kWh/year)
Residential Household	2.77	4,852

High Efficiency:

With AC Annual Tune Up

	Efficient	Efficient
Building	Case	Case
Types	(kW)	(kWh/year)
Residential Household	2.70	4,043

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings:

Building Types	Gross Customer Savings (kW)	Gross Customer Savings (kWh/year)
Types		(KWIII/year)
Residential Household	0.07	323

Operational Factor	Adjustment Factor
Persistence Factor (pf)	1.00
Demand Coincidence Factor (cf)	0.20

Building Types	Net Customer Savings (kW)	Net Customer Savings (kWh/year)
Residential Household	0.000	323
On Peak Run Time Reduction Peak Demand Savings	0.07	

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms

Home AC Tune Up - Single Multi Family Residential Home			
Average AC unit Size		3 ton unit	
verage AC Unit EER	1	3.0 EER	
R to kW Conversion	-	12	
	÷ 1	3.0 EER	
erage AC Unit kW/Ton		.92 kW/Ton	
ivelant Full Load Due Hours (FELDH)	1,	160 brs Maar	40 hrs nor Day
velant Full Load Run Hours (EFLRH)	12	160 hrs./Year	4.0 hrs. per Day
erage AC unit Size		3 ton unit	
erage AC Unit kW/Ton	0	.92 kW/Ton	
velant Full Load Run Hours (EFLRH)	x 1,4	60 hrs./Year	
Tune Up - Average AC Unit Energy Consumption	4,0	43 kWh/Year	
orrect Refrigerant Charge			
ogged AHU Filter			
/ Condenser Coil			
Tune Up AC Operational Problems EFLRH Adjustment Factor		8%	Updated number based or
t Tune Up - Average AC Unit Energy Consumption	4 0.	43 kWh/Year	
e Tune Up AC Operational Problems EFLRH Adjustment Factor		8%	
Tune Up - Average AC Unit Energy Consumption		67 kWh/Year	1,577 hrs. per year
Tane op Average Ac onit Energy Consumption	4,5	or Kvvil/ iedi	4.3 hrs. per Day
Tune Up - Average AC Unit Energy Consumption	4,3	67	4.5 m3. per bay
st Tune Up - Average AC Unit Energy Consumption	4,0		
st Tune Up - Average AC Unit Energy Savings		23 kWh/Year	
	5.		
st Tune Up - Average AC Unit Energy Savings	3	23 kWh/Year	
rsistance Factor	<u>x 1</u>	0	
t Customer Level Savings	3	23 kWh/Year	
une Up Energy Savings	3	23 kWh / Year	Savings
rage AC unit Size		3 ton unit	
rage AC Unit kW/Ton	0	.92 kW/Ton	
rage AC Unit Demand		.77 kW	
erage AC Unit Demand	2	.77 kW	
rsistance Factor		.00	
Tune Up Coincidence Factor		.33	Updated number based or
Tune Up On Peak Demand		925 kW	
CUnit Demand will not change. A reduction in operational hou	rs will occur oi	nce tune up is c	completed. This lowers Coincidence Factor
Tune Up Coincidence Factor		.33	
st Tune Up Run Time Reduction Adjustment Factor	x 9	2%	
st Tune Up Coincidence Factor	0	.31	
rage AC Unit Demand	2	.77	
rsistance Factor	x 1	.00	
t Tune Up Coincidence Factor	x 0	.31	
st Tune Up On Peak Demand	0.8	351 kW	
Tune Up On Peak Demand		.92	
t Tune Up On Peak Demand		.85	
Tune Up Demand Savings	0.0)74 kW	
Tune Up Demand Savings	0.0)74 kW Savings	

Program Year 4 July 1, 2012 to June 30, 2013

Operating Hours

Loadshape TBD

Freeridership/Spillover Factors TBD

Coincidence Factor CF = 0.30

Persistence PF = 0.90

Lifetime: 1 Year

Measure Costs and Incentive Levels

Description	Unit	Incentive	Incre	mental Cost
Home AC Tune Up	\$	50.00	\$	300.00

Component Costs and Lifetimes Used in Computing O&M Savings TBD

Reference Tables None

Program Year 4 July 1, 2012 to June 30, 2013

10.3.2 Solar Water Heating Tune-up

Version Date & Revision History

Draft date: February 21, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• KEMA "Impact Evaluation Report of the 2001-2003 Demand Side Management Programs" October 2004. Page 2-36 "Inoperable systems are those that use more than an average of 5 kWh per day, and problem systems use between 2-5 kWh per day.

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

New

Measure Description:

- Demonstrate the benefits of tune-ups
- Educate customer of potential savings and system longevity
- Utilize the participating contractors to contact the customers and have them arrange for the service work
- Participating contractors will use the Hawaii Energy Checklist to inspect and record the pre and post conditions
- Participating contractor's invoice must show that checklist requirements have been met and signed by the servicing technician
- > Customers can have two incentives per location annually

Baseline Efficiencies:

	Energy (kWh)	Demand (kW)
Baseline	577	0.079

High Efficiency:

	Energy (kWh)	Demand (kW)
High Efficiency	328	0.05

Energy/Demand Savings:

	Energy (kWh)	Demand (kW)
Energy Savings	249	0.029

KEMA 2005-2007 Energy and Peak Demand Impact Evaluation Report

Samples	kW		On Peak	Total	On Peak
Samples	Group	Unit	Demand	kWh	Demand
260	All	577	0.079	150,020	20.5
18	Failed	3,925	0.469	70,644	8.4
242	Operating	328	0.050	79,376	12.1

Program Year 4 July 1, 2012 to June 30, 2013

Operating Hours 10 hours

Loadshape TBD

Freeridership/Spillover Factors TBD

Demand Coincidence Factor

Persistence

Lifetime 5 years

Measure Costs and Incentive Levels

Incentive = \$100/unit

Component Costs and Lifetimes Used in Computing O&M Savings TBD

Reference Tables
None

Hawaii Energy - Technical Reference Manual No. 2012 Program Year 4 July 1, 2012 to June 30, 2013

11 (RHTR) Residential Hard to Reach

11.1 Energy Efficiency Equipment Grants

11.1.1 Solar Inspections (Weatherization Assistance Program)

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Description:

Energy and Demand Savings:

Based on the percentage (%) the Solar Inspection cost compared to incentives. For example, Solar Inspection Cost = \$95 and the Solar Water Heater Incentive = \$750. The energy savings = 10%

Energy Savings	= 10% x 2066 kWh/year = 206.6 kWh/year
Demand Savings	= 10% x 0.46 kW = 0.046 kW

Example

Solar Inspection Demand Savings	0.046 kW Savings
Solar Inspection Energy Savings	206.6 kWh / Year Savings
Percentage Savings = Cost/Incentive	10% Savings
Solar Inspection (WAP) Cost Solar Water Heating Incentive	\$ 75.00 \$ 750.00

.

.

•

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithm

Hot Water needed per Person	13.	3 Gallons per Day per Person	HE
Average Occupants		7 Persons	KEMA 2008
Household Hot Water Usage		2 Gallons per Day	
Mass of Water Conversion	8.3	4 lbs/gal	
Finish Temperature of Water		0 deg. F Finish Temp	
Initial Temperature of Water		5 deg. F Initial Temp	
Temperature Rise	5	5 deg. F Temperature Rise	
Energy to Raise Water Temp	1.	0 BTU / deg. F / lbs.	_
nergy per Day (BTU) Needed in Tank	23,006	8 BTU/Day	
nergy per Day (BTU) Needed in Tank		5 BTU/Day	
BTU to kWh Energy Conversion		kWh/BTU	
nergy per Day (kWh)		7 kWh / Day	
Days per Month		Days per Month	
nergy (kWh) per Month		5 kWh / Month	
Days per Year		5 Days per Year	
Energy (kWh) Needed in Tank to Heat Water per Year) kWh/Year	
lec. Res. Water Heater Efficiency		COP	
Base SERWH Energy Usage per Year at the Meter	2,733	3 kWh/Year	KEMA 2008 - HECO
Design Annual Solar Fraction		% Water Heated by Solar System % Water Heated by Remaining Backup Element	Program Design
Energy Usage per Year at the Meter		8 kWh / Year % Water Heated by Remaining Backup Element	
Back Up Element Energy Used at Meter		3 kWh / Year	
Circulation Pump Energy		2 kW	KEMA 2008
Pump Hours of Operation		Hours per Year	KEMA 2008
Pump Energy used per Year	106	5 kWh/Year	
Back Up Element Energy Used at Meter	273	8 kWh / Year	72%
Pump Energy used per Year	+ 106	kWh / Year	28%
Design Solar System Energy Usage	379	9 kWh / Year	
Base SERWH Energy Usage per Year at the Meter	2,733	3 kWh / Year	
Design Solar System Energy Usage	- 379	y kWh / Year	
Design Solar System Energy Savings	2,354	1 kWh / Year	
Design Solar System Energy Savings	2,354	kWh / Year	
Performance Factor	0.94	1 pf	HE
Persistance Factor	x 0.93	3 pf	KEMA 2008
	2,066	kWh/Year	KEMA 2008
Residential Solar Water Heater Energy Savings	2,066	6 kWh / Year Savings	1
to a contract that the aler Lifergy Saviligs			
			-
Base SERWH Element Power Consumption) kW	
ase SERWH Element Power Consumption	x 0.143	<u>s</u> _cf	
Base SERWH Element Power Consumption	x 0.143		8.6 Minutes per ho KEMA 2008
Base SERWH Element Power Consumption Coincidence Factor Base SERWH On Peak Demand	x 0.143 0.57	<u>s</u> _cf	
Base SERWH Element Power Consumption coincidence Factor Base SERWH On Peak Demand Base SERWH On Peak Demand	x 0.143 0.57 - 0.57	3_cf / kW On Peak	
Base SERWH Element Power Consumption Coincidence Factor Base SERWH On Peak Demand Base SERWH On Peak Demand	x 0.143 0.57 - 0.57 - 0.11	3_cf 7_kW On Peak 7_kW On Peak	
Base SERWH Element Power Consumption Coincidence Factor Base SERWH On Peak Demand Base SERWH On Peak Demand Solar System Metered on Peak Demand	x 0.143 0.57 - 0.57 - 0.11 0.46	3_cf 7_kW On Peak 7_kW On Peak kW On Peak	KEMA 2008
Base SERWH Element Power Consumption Coincidence Factor Base SERWH On Peak Demand Base SERWH On Peak Demand Solar System Metered on Peak Demand Residential Solar Water Heater Demand Savings	x 0.143 0.57 - 0.57 - 0.11 0.46	g_cf / kW On Peak / kW On Peak / kW On Peak / kW On Peak / kW Savings	KEMA 2008
Base SERWH Element Power Consumption Coincidence Factor Base SERWH On Peak Demand Base SERWH On Peak Demand Solar System Metered on Peak Demand Residential Solar Water Heater Demand Savings Solar Inspection (WAP) Cost Solar Water Heating Incentive	x 0.143 0.57 - 0.57 - 0.11 0.46	cf kW On Peak kW On Peak kW On Peak kW On Peak kW Savings	KEMA 2008
Base SERWH Element Power Consumption Coincidence Factor Base SERWH On Peak Demand Base SERWH On Peak Demand Solar System Metered on Peak Demand Residential Solar Water Heater Demand Savings Biolar Inspection (WAP) Cost Biolar Water Heating Incentive	x 0.143 0.57 - 0.57 - 0.11 0.46 0.46 \$ 75.00 \$ 75.00	cf kW On Peak kW On Peak kW On Peak kW On Peak kW Savings	KEMA 2008
Base SERWH Element Power Consumption Coincidence Factor Base SERWH On Peak Demand Base SERWH On Peak Demand Solar System Metered on Peak Demand Residential Solar Water Heater Demand Savings Solar Inspection (WAP) Cost	x 0.143 0.57 - 0.57 - 0.11 0.46 \$ 75.00 \$ 750.00 109	s_cf 7 kW On Peak <u>k</u> W On Peak <u>k</u> W On Peak 5 kW On Peak 5 kW Savings	KEMA 2008

Program Year 4 July 1, 2012 to June 30, 2013

11.1.2 Energy Hero Gift Packs

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Energy and Peak Demand Impact Evaluation Report of the 2005-2007
- Demand Management Programs KEMA (KEMA 2005-07)
- Econorthwest TRM Review 6/23/10
- Energy and Peak Demand Impact Evaluation Report of the 2005-2007 Demand Management Programs – (KEMA 2005-07)
- US DOE: Federal Energy Management Program (2010). Cost Calculator for Faucets & Shower Heads.

http://www1.eere.energy.gov/femp/technologies/eep_faucets_showerheads_calc.html#output

TRM Review Actions:

- 10/06/11 Added additional items to possible gift pack components list and corresponding data. Items included: LED lamp, low flow shower head for standard electric water heating systems, low flow shower head for solar heating systems, and faucet aerators.
- 10/06/11 Currently Under Review.

Major Changes:

- 10/06/11 Added additional items to possible gift pack components list (including data)
- 11/22/11 LED algorithm updated. See section 8.2.2 for changes.
- 11/22/11 Akamai Power Strip kWh savings updated based on NYSERDA Measure Characterization for Advanced Power Strips.
- 11/22/11 Updated content in headings Base Case, High Efficiency Case, and Energy Savings in regard to LED lamps to match section 8.2.2.
- 11/29/11 Low Flow Shower Head algorithms updated previously claiming only 50% of total energy savings due to inaccurately calculating hot and cold water mix. Also updated *Energy Savings* table as necessary.
- 11/29/11 Faucet Aerator algorithm updated recalculated to follow low flow shower head algorithm, and include solar and non-solar calculations. Also updated *Energy Savings* table as necessary.

Program Year 4 July 1, 2012 to June 30, 2013

Description:

Potential gift pack components:

- Compact Fluorescent Lamp (15W)
- Akamai Power Strip
- LED Lamp (7W)
- Low Flow Shower Head Solar Water Heater (1.5 gpm)
- Low Flow Shower Head Standard Electric Water Heater (1.5 gpm)
- Faucet Aerator (2.2 gpm)

Base Case

- 60 W incandescent lamps
- Standard power strip or no power strip
- 25% 60W incandescent, 25% 40W incandescent, 25% 23W CFLs and 25% 13W CFLs (See LED TRM)
- Low Flow Shower Head Solar Water Heater (1.5 gpm)
- Low Flow Shower Head Standard Electric Water Heater (1.5 gpm)
- Faucet Aerator (1.5 gpm)

High Efficiency Case

- Replace 60 W incandescent lamps with CFLs rated at 15W
- Replace existing standard power strip or no power strip with Akamai Power Strip
- Replace existing non-LED lamp with LED lamp (50% 7W and 50% 12.5W)
- Replace 2.5 gpm Low Flow Shower Head with Low Flow Shower (Solar) Head rated at 1.5 gpm
- Replace 2.5 gpm Low Flow Shower Head with Low Flow Shower (Electric) Head rated at 1.5 gpm
- Replace 2.2 gpm Faucet Aerator with Low Flow Faucet Aerator rated at 1.5 gpm

Energy Savings

Measure	Energy Savings (kWh / year)	Demand Savings (kW)
Compact Fluorescent Lamp	119.7	0.0170
Akamai Power Strip	78.0	0.0089
LED	16.6	0.0030
Low Flow Shower Head - Solar	42.0	0.0440
Low Flow Shower Head - Electric Water Heater	306.0	0.2300
Faucet Aerator - Solar	31.0	0.0350
Faucet Aerator - Electric Water Heater	226.0	0.1800

Measure life

Measure	Measure Lfe (Years)
Compact Fluorescent Lamp	119.7
Akamai Power Strip	78.0
LED	16.6
Low Flow Shower Head - Solar	42.0
Low Flow Shower Head - Electric Water Heater	306.0
Faucet Aerator - Solar	31.0
Faucet Aerator - Electric Water Heater	226.0

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms			
CFL - Single and Multi Family Residential Home			
Quantity three (3) Pack		3	
60W Incandescent Lamp Demand		0.060 kW	
		2.30 Hours per Day	
	х	365 Days	839.5 Hours per Year
60W Incandescent Lamp Energy Usage		151.1 kWh per Year	
15W Compact Fluorescent Lamp Demand		0.015 kW	
		2.30 Hours per Day	
-	Х	365 Days	839.5 Hours per Year
15W Compact Fluorescent Lamp Energy Usage		12.6 kWh per Year	
60W Incandescent Lamp Energy Usage		151.1 kWh per Year	
15W Compact Fluorescent Lamp Energy Usage	-	12.6 kWh per Year	
CFL Savings Before Adjustments		138.5 kWh per Year	
		138.5 kWh per Year	
Persistance Factor	х	<u>0.800</u> pf	20.0% Lamps not installed or replaced back
		110.8 kWh per Year	
Adjustment for Mix of CFL sizes found in CA study		110.8 kWh per Year	
-	х	1.08	
		119.7 kWh per Year	
CFL Energy Savings		119.7 kWh / Year Savings	
Three (3) 60W Incandescent Lamp Demand		0.180 kW	
15W Compact Fluorescent Lamp Demand	-	<u>0.015</u> kW	
CFL Demand Reduction Before Adjustments		0.165 kW	
CFL Demand Reduction Before Adjustments		0.165 kW	
Coincidence Factor		0.120 cf	12.0% Lamps on between 5 and 9 p.m.
Persistance Factor	х	<u>0.800</u> pf	20.0% Lamps not installed or replaced back
		0.016 kW	
Adjustment for Mix of CFL sizes found in CA study		0.016 kw	
_	х	1.08 factor	
		0.017 kWh per Year	
CFL Demand Savings		0.017 kWh per Year	

Program Year 4 July 1, 2012 to June 30, 2013

			_
Akamai Power Strips			
Savings per Unit	56.5 kWh	102.8 kWh	NYSERDA Measure Characterization for
Plugs per Unit	5 plugs	<u> </u>	Advanced Power Strips
Savings per Plug	11.3 kWh/plug	14.68571 kWh/plug	
Average Savings per Plug		13.0 kWh	
	x	6 plugs/unit	7
Akamai Power Strip Energy Savings		78 kWh per Unit first year	
Hours of Operation Demand Savings		8760 hours/year	1
		0.0000 kW	1
First Year Savings		78 kWh first year	
Measure Life	x	5 year measure life	
ifetime Savings	3	89.78571 kWh lifetime	
Fotal Resource Cost	\$	30.96	
Total Resource Benefit	÷ \$	46.15	
Fotal Resource Cost Ratio		1.5 TRB Ratio	
Potential Akamai Power Strip Incentive	\$	7.00	
First Year Savings	÷	66 kWh first year	
	\$	0.11 per kWh first year	
Standard Power Strip Cost	Ś	14.49	
Akamai Power Strip Cost	- \$	30.96	
ncremental Akamai Power Strip Cost	\$	16.47	
ncremental Akamai Power Strip Cost	\$	16.47	
Potential Akamai Power Strip Incentive	÷_\$	7.00	
Percentage of Incremental Cost		43%	
Akamai Power Strip Cost	\$	30.96	
Potential Akamai Power Strip Incentive	÷_\$	7.00	
Percentage of Customer Measure Cost		23%	

Program Year 4 July 1, 2012 to June 30, 2013

LED - Single and Multi Family Residential Home

Lamp Average Demand	x	0.035 kW 2.30 Hours per Day 365 Days 839.50 Hours per Year
Baseline Energy Usage		28.96 kWh per Year
Enhanced LED Lamp Average Demand	x	0.010 kW 2.30 Hours per Day 365 Days 839.50 Hours per Year
Enhanced LED Lamp Energy Usage	<u>^</u>	8.19 kWh per Year
Baseline Energy Usage Enhanced LED Lamp Energy Usage LED Savings Before Adjustments	<u>-</u> s	29.0kWh per Year8.2kWh per Year20.78kWh per Year
Persistance Factor	x	20.8kWh per Year0.800pf20.0% Lamps not installed or replaced back16.6kWh per Year
LED Energy Savings		16.6 kWh / Year Savings
Baseline Lamp Demand Enhanced LED Lamp Demand LED Demand Reduction Before Adjustments LED Demand Reduction Before Adjustments Coincidence Factor Persistance Factor	<u>-</u> s	0.035 kW 0.007 kW 0.028 kW 0.028 kW 0.120 cf 12.0% Lamps on between 5 and 9 p.m. 0.800 pf 20.0% Lamps not installed or replaced back
	_	0.003 kW
LED Demand Savings		0.003 kW Savings

Program Year 4 July 1, 2012 to June 30, 2013

Low Flow Showerhead w/Solar Water Heating

Energy per Day (BTU) = (Gallons per Day) x (lbs. per G	al.) x (Te	mp Rise) x (Energy to Raise Water	Temp)
Hot Water needed per Person		13.3 Gallons per Day per Person	HE
Average Occupants	x	3.77 Persons	KEMA 2008
Household Hot Water Usage		50.2 Gallons per Day	
Mass of Water Conversion		8.34 lbs/gal	
Finish Temperature of Water		130 deg. F Finish Temp	
Initial Temperature of Water	-	75 deg. F Initial Temp	
Temperature Rise		55 deg. F Temperature Rise	
Energy to Raise Water Temp		1.0 BTU/deg. F/lbs.	_
Energy per Day (BTU) Needed in Tank	2	23,006 BTU/Day	
Energy per Day (BTU) Needed in Tank	2	23,006 BTU/Day	
BTU to kWh Energy Conversion	÷	3,412 BTU/kWh	
Energy per Day (kWh)		6.7 kWh/Day	
Days per Month	х	30.4 Days per Month	
Energy (kWh) per Month		205 kWh / Month	
Days per Year	х	365 Days per Year	
Energy (kWh) Needed in Tank to Heat Water per Year		2,460 kWh / Year	
Elec. Res. Water Heater Efficiency	÷	0.90 COP	
Base SERWH Energy Usage per Year at the Meter		2,733 kWh / Year	KEMA 2008 - HECO
Design Annual Solar Fraction		90% Water Heated by Solar Syst 10% Water Heated by Remaining	
Energy Usage per Year at the Meter		2,733 kWh / Year	
	х	10% Water Heated by Remaining	Backup Element
Back Up Element Energy Used at Meter		273 kWh/Year	
Circulation Pump Energy		0.082 kW	KEMA 2008
Pump Hours of Operation	х	1,292 Hours per Year	KEMA 2008
Pump Energy used per Year		106 kWh / Year	
Back Up Element Energy Used at Meter		273 kWh / Year	72%
Pump Energy used per Year	+	106 kWh / Year	28%
Design Solar System Energy Usage		379 kWh / Year	
Utilization Factor		28%	Hot water used for showers (AMMA)
Hot Water Usage from Showers		106	
Deep Core Chauserhand			
Base Case Showerhead		2.5 GPM	
High Efficiency Case Showerhead Savings = (1 - High Efficiency/Base)		1.5 GPM 40%	
Energy Savings		42 kWh / Year]
Solar System Metered on Peak Demand		0.11 kW On Peak	- KEMA 2008
Demand Savings		40%	12mn 2000
Residential Low Flow Shower Head Demand Savin	as	0.044 kW Savings	1
nesidential Low How Shower nead Demaild Savin	ყა	V.VTT NY Savings	_

Program Year 4 July 1, 2012 to June 30, 2013

Low Flow Showerhead w/Standard Electric Resistance Water Heater (SERWH)

Energy per Day (BTU) = (Gallons per Day) x (lbs. per Gal.) x (Temp Rise) x (Energy to Raise Water Temp)

Hot Water needed per Person		13.3 Gallons per Day per Person	HE
Average Occupants	х	3.77 Persons	KEMA 2008
Household Hot Water Usage		50.2 Gallons per Day	
Mass of Water Conversion		8.34 lbs/gal	
Finish Temperature of Water		130 deg. F Finish Temp	
Initial Temperature of Water		75 deg. F Initial Temp	
	-	55 deg. F Temperature Rise	
Temperature Rise		55 deg. F Temperature Rise	
Energy to Raise Water Temp		1.0 BTU/deg. F/lbs.	
Energy per Day (BTU) Needed in Tank		23,006 BTU/Day	_
Energy per Day (BTU) Needed in Tank		23,006 BTU/Day	
BTU to kWh Energy Conversion	÷	3,412 BTU/kWh	
Energy per Day (kWh)		6.7 kWh / Day	
Days per Month	х	30.4 Days per Month	
Energy (kWh) per Month		205 kWh / Month	
Days per Year	х	365 Days per Year	
Energy (kWh) Needed in Tank to Heat Water per Year		2,460 kWh / Year	
Elec. Res. Water Heater Efficiency	÷	0.90_COP	
Base SERWH Energy Usage per Year at the Meter		2,733 kWh / Year	KEMA 2008 - HECO
Utilization Factor		28%	Hot water used for showers (AMMA)
Base SERWH Energy Usage per Year at the Meter		765 kWh/Year	Energy Usage for showers
Base Case Showerhead		2.5 GPM	
High Efficiency Case Showerhead		1.5 GPM	
Savings = (1 - High Efficiency/Base)		40%	
Energy Savings		306 kWh / Year	
SERWH Element Power Consumption		4.0 kW	
Coincidence Factor	х	0.143 cf	
SERWH On Peak Demand		0.57 kW On Peak	
		0.57 KW ON FORK	8.6 Minutes per hour
Demand Savings		40%	KEMA 2008
Residential Low Flow Shower Head Demand Savin	gs	0.23 kW Savings	

Program Year 4 July 1, 2012 to June 30, 2013

Faucet Aerator w/Solar Water Heating

BTU to kWh Energy Conversion ÷ 3,412 BTU/kWh Energy per Day (kWh) 6.7 kWh / Day Days per Month × 30.4 Days per Month Days per Month × 30.4 Days per Month Days per Year × 365 Days per Year Energy (kWh) Needed in Tank to Heat Water per Year 2,460 kWh / Year Elec. Rs. Water Heater Efficiency × 3.00 COP Base SERWH Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 - HECO Design Annual Solar Fraction 90% Water Heated by Solar Syste Program Design 10% Water Heated by Remaining Backup Element Energy Usage per Year at the Meter 2,733 kWh / Year XEMA 2008 Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 Circulation Pump Energy 0.082 kW KEMA 2008 KEMA 2008 Pump Energy Used per Year 106 kWh / Year 28% 28% Design Solar System Energy Used at Meter 273 kWh / Year 28% 28% Design Solar System Energy Used at Meter 273 kWh / Year 28% 28%	Energy per Day (BTU) = (Gallons per Day) x (lbs. per Ga	ai.) X (Temp Rise) X (Energy to Raise Water	remp)
Household Hou Water Usage 50.2 Gallons per Day Mass of Water Conversion 8.34 lbs/gal Finish Temperature of Water 130 deg. F Finish Temp Initial Temperature of Water 75 deg. F Initial Temp Temperature Rise 55 deg. F Temperature Rise Energy Day (BTU) Needed in Tank 23.006 BTU/Day Bit Us KWh Energy Conversion 4.3.412 BTU/KWh Energy PDay (BTU) Needed in Tank 23.006 BTU/Day Bit Us KWh Energy Conversion 4.3.412 BTU/KWh Energy PDay (BTU) Needed in Tank 23.006 BTU/Day Bit Us KWh Energy Conversion 4.3.412 BTU/KWh Energy PDay (BTU) Needed in Tank 23.006 BTU/Day Bit Us KWh Energy Conversion 4.3.412 BTU/KWh Energy PCay (Wh) 7.33 KWh / Year Corey GWNN Need and In Tank to Heat Water per Year 2.460 KWh / Year Eler. Res. Water Heater Efficiency 2.733 KWh / Year Elergy Usage per Year at the Meter 2.733 KWh / Year Energy Usage per Year at the Meter 2.733 KWh / Year Energy Usage per Year 0.082 kW Year XEMA 2008 Pump Hours of Operation x Year 1.292 Hours per Year Back Up Element Energy Usaga 212 KWh / Year Design Sdar System Energy Usaga 379 KWh / Year	Hot Water needed per Person			
Mass of Water Conversion 8.34 lbs/gal Finish Temperature of Water Initial Temparature of Water Temperature Rise 130 deg. F Finish Temp Zeg. F Initial Temp Temperature Rise 55 deg. F Temperature Rise Energy to Raise Water Temp 1.0 BTU / deg. F / lbs. Energy per Day (BTU) Needed in Tank 23,006 BTU/Day BTU to kWh Energy Conversion		х		KEMA 2008
Finish Temperature of Water Initial Temperature of Water Temperature Rise 130 deg. Flish Temp 75 deg. Flish Temp 55 deg. Flish 50 deg.	Household Hot Water Usage		50.2 Gallons per Day	
Initial Temperature of Water Temperature Rise 75 deg. F Temperature Rise Energy to Raise Water Temp 1.0 BTU / deg. F / lbs. Energy to Raise Water Temp 1.0 BTU / deg. F / lbs. Energy per Day (BTU) Needed in Tank 23,006 BTU to KMb Energy Conversion + * 3.412 BTU/KWh 6.7 KWh / Day Days per Month × Days per Month × Days per Vear - Energy (KWh) Needed in Tank to Heat Water per Year Energy (KWh) Needed in Tank to Heat Water per Year Energy (KWh) Needed in Tank to Heat Water per Year Energy (KWh) Needed in Tank to Heat Water per Year Energy Usage per Year at the Meter 2,733 KWh / Year KEMA 2008 - HECO Design Annual Solar Fraction 90% Water Heated by Solar Syste Program Design 10% Water Heated by Remaining Backup Element Back Up Element Energy Used at Meter 2.73 Circulation Pump Energy Pump Energy used per Year 0.082 kWh / Year Dass Ster Wh Tenergy Used at Meter 2.73 Wuh / Year XEMA 2008 Pump Energy used per Year 2.2 GPM Hitigh Efficiency/Base) 32% Base Case Aerator 2.2 GPM Hitigh Efficiency/Base) 32%	Mass of Water Conversion		8.34 lbs/gal	
Temperature Rise 55 deg. Ftemperature Rise Energy to Raise Water Temp 1.0 BTU / deg. F / lbs. Energy per Day (BTU) Needed in Tank 23,006 BTU to KWh Energy Conversion 2 \$			•	
Energy to Raise Water Temp 1.0 BTU / deg. F / lbs. Energy per Day (BTU) Needed in Tank 23,006 BTU/Day Energy per Day (BTU) Needed in Tank 23,006 BTU/Day BTU to kWh Energy Conversion + 3,412 BTU/KWh Energy (KWh) - - - Days per Month - - - Energy (kWh) per Day (kWh) - - - Days per Month - - - - Energy (kWh) per Month - - - - Days per Month - - - - - Energy (kWh) per dead in Tank to Heat Water per Year - - - - - Energy (kWh) Needed in Tank to Heat Water per Year -		-		
Energy per Day (BTU) Needed in Tank 23,006 BTU/Day Energy per Day (BTU) Needed in Tank 23,006 BTU/Day BTU to KWh Energy Conversion <u>+ 3,412</u> BTU/KWh Energy per Day (KWh) <u>647</u> KWh / Day Days per Month <u>205</u> KWh / Month Days per Year <u>2,460</u> KWh / Year Elec. Res. Water Heater Brite Filciency Elec. Res. Water Heater Efficiency <u>+ 0.99</u> COP Base SERWH Energy Usage per Year at the Meter <u>2,733</u> KWh / Year KEMA 2008 - HECO Design Annual Solar Fraction <u>90% Water Heated by Solar Syste Program Design</u> 10% Water Heated by Remaining Backup Element Energy Usage per Year at the Meter <u>2,733</u> KWh / Year KEMA 2008 Energy Usage per Year at the Meter <u>2,733</u> KWh / Year KEMA 2008 Pump Lenergy Used at Meter <u>2,733</u> KWh / Year KEMA 2008 Pump Energy Used per Year <u>106</u> KWh / Year <u>28%</u> Design Solar System Energy Used at Meter <u>273</u> KWh / Year <u>28%</u> Design Solar System Energy Used at Meter <u>226</u> KWh / Year <u>28%</u> Design Solar System Energy Used at Meter <u>226</u> KWh / Year <u>28%</u> Design Solar System Energy Used at Meter <u>226</u> GWH / Year <u>28%</u> Design Solar System Energy Used at Meter <u>226</u> GWH / Year <u>28%</u> Design Solar System Energy Used at Meter <u>226</u> GPM High Efficiency/Base) <u>31</u> KWh / Year <u>28%</u> Design Solar System Metered on Peak Demand <u>0.11</u> KW On Peak KEMA 2008 Demand Savings <u>0</u> 11 KW On Peak KEMA 2008	Temperature Rise		55 deg. F Temperature Rise	
Energy per Day (BTU) Needed in Tank 23,006 BTU/Day Energy per Day (BTU) Tank 23,006 BTU/Day Energy per Day (KWh) 6.7 KWh / Day Days per Year 30.4 Days per Year Energy (KWh) per Month 205 KWh / Day Days per Year 365 Days per Year Energy (KWh) Needed in Tank to Heat Water per Year 2,460 KWh / Year Energy (KWh) Needed in Tank to Heat Water per Year 2,460 KWh / Year Energy (KWh) Needed in Tank to Heat Water per Year 2,460 KWh / Year Energy (KWh) Needed in Tank to Heat Water per Year 2,460 KWh / Year Energy Usage per Year at the Meter 2,733 KWh / Year KEMA 2008 - HECO Design Annual Solar Fraction 90% Water Heated by Solar Syste Program Design 10% Water Heated by Remaining Backup Element Energy Usage per Year at the Meter 2,733 KWh / Year X Days Der Year 0.082 KWM A 2008 Pump Honergy 0.082 KW KEMA 2008 Pump Honergy used per Year 106 KWh / Year Pump Energy used per Year 106 KWh / Year Design Solar System Energy Used at Meter 273 KWh / Year Pump Energy used per Year 226 KWh / Year				_
BTU to kWh Energy Conversion + 3,412 BTU/kWh Energy per Day (kWh) 6.7 kWh / Day Days per Month 205 kWh / Month Days per Month 205 kWh / Month Days per Year x 365 Days per Year Energy (kWh) Needed in Tank to Heat Water per Year 2,460 kWh / Year EMA Elce, Res. Water Heater Efficiency + 0.90 COP Base SERWH Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 - HECO Design Annual Solar Fraction 90% Water Heated by Solar Syste Program Design 10% Water Heated by Remaining Backup Element 2,733 kWh / Year Energy Usage per Year at the Meter 2,733 kWh / Year x 10% Water Heated by Remaining Backup Element Energy Usage per Year at the Meter 2,733 kWh / Year x 10% Water Heated by Remaining Backup Element Back Up Element Energy Used at Meter 2,73 kWh / Year 72% Year Pump Finergy used per Year + 106 kWh / Year 72% Pump Energy Used at Meter 2,23 kWh / Year 28% Design Solar	Energy per bay (BTO) Needed in Tank		23,006 BIU/Day	
Energy per Day (kWh) 6.7 KWh / Day Days per Month x 30.4 Days per Month Days per Year 205 KWh / Month 205 Days per Year 2.460 KWh / Year 2.400 Energy (kWh) Needed in Tank to Heat Water per Year 2.460 KWh / Year KEMA 2008 - HECO Base SERWH Energy Usage per Year at the Meter 2.733 KWh / Year KEMA 2008 - HECO Design Annual Solar Fraction 90% Water Heated by Solar Syste Program Design 10% Water Heated by Remaining Backup Element 2.733 kWh / Year Energy Usage per Year at the Meter 2.733 kWh / Year KEMA 2008 Energy Usage per Year at the Meter 2.733 kWh / Year KEMA 2008 Pump Guergy Usage per Year at the Meter 2.733 kWh / Year KEMA 2008 Pump Hours of Operation x 1,292 Hours per Year KEMA 2008 Pump Energy Used per Year 106 kWh / Year 28% 28% Design Solar System Energy Usage 379 kWh / Year 28% 28% Design Solar System Energy Usage 379 kWh / Year 28% 28% Base Case	Energy per Day (BTU) Needed in Tank			
Days per Month x 30.4 Days per Month Energy (kWh) per Month 205 kWh / Month Days per Year Days per Year Energy (kWh) Needed in Tank to Heat Water per Year 2,460 kWh / Year Elec. Res. Water Heater Efficiency 2,733 kWh / Year Base SERWH Energy Usage per Year at the Meter 2,733 kWh / Year Design Annual Solar Fraction 90% Water Heated by Solar Syste Program Design 10% Water Heated by Remaining Backup Element 2,733 kWh / Year Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 Back Up Element Energy Used at Meter 273 kWh / Year KEMA 2008 Pump Energy used per Year 106 kWh / Year 22% Back Up Element Energy Used at Meter 273 kWh / Year 28% Design Solar System Energy Used 379 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Design So		÷		
Energy (kWh) per Month Days per Year Energy (kWh) Needed in Tank to Heat Water per Year Energy (kWh) Needed in Tank to Heat Water per Year Elsc. Res. Vater Heater Efficiency Base SERWH Energy Usage per Year at the Meter Design Annual Solar Fraction Design Solar System Energy Used at Meter Dump Energy used per Year Dump Energy Used at Meter Design Solar System Energy Usage Design Solar System Metered on Peak Demand Demand Savings Demand Savings			, ,	
Days per Year x 365 Days per Year Energy (kWh) Needed in Tank to Heat Water per Year 2,460 kWh / Year KEMA 2008 - HECO Base SERWH Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 - HECO Design Annual Solar Fraction 90% Water Heated by Solar Syste Program Design 10% Water Heated by Remaining Backup Element Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 Back Up Element Energy Used at Meter 2,733 kWh / Year KEMA 2008 Pump Hours of Operation x 1,292 Hours per Year KEMA 2008 Pump Energy used per Year 0.682 kW KEMA 2008 KEMA 2008 Pump Energy used per Year 0.682 kW / Year 22% 28% Design Solar System Energy Used at Meter 273 kWh / Year 28% Design Solar System Energy Used at Meter 273 kWh / Year 28% Design Solar System Energy Used at Meter 273 kWh / Year 28% Design Solar System Energy Used at Meter 273 kWh / Year 28% <td< th=""><th></th><th>х</th><th></th><th></th></td<>		х		
Energy (kWh) Needed in Tank to Heat Water per Year 2,460 kWh / Year Elec. Res. Water Heater Efficiency ÷ 0.90 COP Base SERWH Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 - HECO Design Annual Solar Fraction 90% Water Heated by Solar Syste Program Design 10% Water Heated by Remaining Backup Element Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 - HECO Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 Pump Energy Used at Meter 273 kWh / Year 72% Pump Energy used per Year 106 kWh / Year 72% Pump Energy Used at Meter 273 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Design Solar System For Faucets 99 40<				
Elec. Res. Water Heater Efficiency + 0.90 COP Base SERWH Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 - HECO Design Annual Solar Fraction 90% Water Heated by Solar Syste Program Design 10% Water Heated by Remaining Backup Element Energy Usage per Year at the Meter 2,733 kWh / Year Back Up Element Energy Used at Meter 2,733 kWh / Year Circulation Pump Energy 0.082 kW KEMA 2008 Pump Hours of Operation x 1,292 Hours per Year Pump Energy used per Year 106 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Design Solar System Feregy Usage 379 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Design Solar System Feregy Usage 379 kWh / Year 28% Design Solar System Factor 2.2 GPM 1.5 GPM 32% Base Case Aerator 1.5 GPM 32% 28% Base Case Aerator 32% 32% XEMA 2008		х		
Base SERWH Energy Usage per Year at the Meter 2,733 kWh / Year KEMA 2008 - HECO Design Annual Solar Fraction 90% Water Heated by Solar Syste Program Design 10% Water Heated by Remaining Backup Element Energy Usage per Year at the Meter 2,733 kWh / Year Back Up Element Energy Used at Meter 2,733 kWh / Year Circulation Pump Energy 0.082 kW KEMA 2008 Pump Hours of Operation x 1,292 Pump Energy used per Year 106 kWh / Year Back Up Element Energy Used at Meter 273 kWh / Year Pump Energy used per Year 106 kWh / Year Back Up Element Energy Used at Meter 273 kWh / Year Pump Energy used per Year 106 kWh / Year Base Case Acrator 26% Hot water used for showers (AMMA Hot Water Usage from Faucets Base Case Acrator 1.5 GPM High Efficiency/Base) 32% 32%			, ,	
10% Water Heated by Remaining Backup Element Energy Usage per Year at the Meter 2,733 kWh / Year Back Up Element Energy Used at Meter 273 kWh / Year Circulation Pump Energy 0.082 kW KEMA 2008 Pump Hours of Operation x 1,292 Pump Energy used per Year 106 kWh / Year 72% Pump Energy Used at Meter 273 kWh / Year 72% Pump Energy Used at Meter 273 kWh / Year 28% Design Solar System Energy Used at Meter 273 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Base Case Aerator 2.2 GPM Hot water used for showers (AMMA High Efficiency/Base) 32% 32%	Base SERWH Energy Usage per Year at the Meter	÷		KEMA 2008 - HECO
x 10% Water Heated by Remaining Backup Element Back Up Element Energy Used at Meter 273 kWh / Year Circulation Pump Energy 0.082 kW KEMA 2008 Pump Hours of Operation x 1,292 Pump Energy used per Year 106 kWh / Year Back Up Element Energy Used at Meter 273 kWh / Year Pump Energy used per Year 106 kWh / Year Back Up Element Energy Usage 379 kWh / Year Pump Energy used per Year + 106 Pump Energy used per Year 26% Hot water used for showers (AMMA Design Solar System Energy Usage 379 kWh / Year Utilization Factor 26% Hot water used for showers (AMMA Hot Water Usage from Faucets 99 9 Base Case Aerator 2.2 GPM High Efficiency Case Aerator 1.5 GPM Savings 31 kWh / Year Solar System Metered on Peak Demand 0.11 kW On Peak KEMA 2008 Demand Savings 32% 32%	Design Annual Solar Fraction			
Back Up Element Energy Used at Meter 273 kWh / Year Circulation Pump Energy 0.082 kW KEMA 2008 Pump Hours of Operation x 1,292 Hours per Year Pump Energy used per Year 106 kWh / Year 72% Back Up Element Energy Used at Meter 273 kWh / Year 72% Pump Energy used per Year 106 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Utilization Factor 26% Hot water used for showers (AMMA Hot Water Usage from Faucets 99 9 Hot water used for showers (AMMA Base Case Aerator 1.5 GPM Savings = (1 - High Efficiency/Base) 32% Energy Savings 31 kWh / Year KEMA 2008 Solar System Metered on Peak Demand 0.11 kW On Peak KEMA 2008	Energy Usage per Year at the Meter	x		Backup Element
Nump Hours of Operation x 1,292 Hours per Year KEMA 2008 Pump Energy used per Year 106 kWh / Year 72% Back Up Element Energy Used at Meter 273 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Utilization Factor 26% Hot water used for showers (AMMA Hot Water Usage from Faucets 99 99 Base Case Aerator 1.5 GPM High Efficiency Case Aerator 1.5 GPM Savings = (1 - High Efficiency/Base) 31 kWh / Year Solar System Metered on Peak Demand 0.11 kW On Peak KEMA 2008	Back Up Element Energy Used at Meter		273 kWh / Year	
Pump Energy used per Year 106 kWh / Year Back Up Element Energy Used at Meter 273 kWh / Year 72% Pump Energy used per Year + 106 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Utilization Factor 26% Hot water used for showers (AMMA Hot Water Usage from Faucets 99 99 Base Case Aerator 1.5 GPM High Efficiency Case Aerator 1.5 GPM Savings = (1 - High Efficiency/Base) 32% Energy Savings 31 kWh / Year Solar System Metered on Peak Demand 0.11 kW On Peak KEMA 2008 Demand Savings 32%	Circulation Pump Energy		0.082 kW	
Back Up Element Energy Used at Meter 273 kWh / Year 72% Pump Energy used per Year + 106 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Utilization Factor 26% Hot water used for showers (AMMA Hot Water Usage from Faucets 99 Base Case Aerator 2.2 GPM High Efficiency Case Aerator 1.5 GPM Savings = (1 - High Efficiency/Base) 32% Energy Savings 31 kWh / Year Solar System Metered on Peak Demand 0.11 kW On Peak KEMA 2008 Demand Savings 32%	Pump Hours of Operation	х		KEMA 2008
Pump Energy used per Year + 106 kWh / Year 28% Design Solar System Energy Usage 379 kWh / Year 28% Utilization Factor 26% Hot water used for showers (AMMA Hot Water Usage from Faucets 99 99 Base Case Aerator 2.2 GPM High Efficiency Case Aerator 1.5 GPM Savings = (1 - High Efficiency/Base) 32% Energy Savings 31 kWh / Year Solar System Metered on Peak Demand 0.11 kW On Peak Metered on Peak Demand 32%	Pump Energy used per Year		106 kWh/Year	
Design Solar System Energy Usage 379 kWh / Year Utilization Factor 26% Hot water used for showers (AMMA Hot Water Usage from Faucets 99 Base Case Aerator 2.2 GPM High Efficiency Case Aerator 1.5 GPM Savings = (1 - High Efficiency/Base) 32% Energy Savings 31 kWh / Year Solar System Metered on Peak Demand 0.11 kW On Peak Metered on Savings 32%	Back Up Element Energy Used at Meter		,	
Utilization Factor 26% Hot water used for showers (AMMA Hot Water Usage from Faucets 99 Hot water used for showers (AMMA Base Case Aerator 2.2 GPM High Efficiency Case Aerator 1.5 GPM Savings = (1 - High Efficiency/Base) 32% Energy Savings 31 kWh / Year Solar System Metered on Peak Demand 0.11 kW On Peak Metered on Peak Demand 32%		+		28%
Hot Water Usage from Faucets 99 Base Case Aerator 2.2 GPM High Efficiency Case Aerator 1.5 GPM Savings = (1 - High Efficiency/Base) 32% Energy Savings 31 kWh / Year Solar System Metered on Peak Demand 0.11 kW On Peak KEMA 2008 Demand Savings 32%				
High Efficiency Case Aerator 1.5 GPM Savings = (1 - High Efficiency/Base) 32% Energy Savings 31 kWh / Year Solar System Metered on Peak Demand 0.11 kW On Peak KEMA 2008 Demand Savings 32%	Utilization Factor Hot Water Usage from Faucets			HOL WATER USED FOR Showers (AMMA
High Efficiency Case Aerator 1.5 GPM Savings = (1 - High Efficiency/Base) 32% Energy Savings 31 kWh / Year Solar System Metered on Peak Demand 0.11 kW On Peak KEMA 2008 Demand Savings 32%	Base Case Aerator		2.2 GPM	
Savings = (1 - High Efficiency/Base) 32% Energy Savings 31 kWh / Year Solar System Metered on Peak Demand 0.11 kW On Peak KEMA 2008 Demand Savings 32%	High Efficiency Case Aerator			
Solar System Metered on Peak Demand 0.11 kW On Peak KEMA 2008 Demand Savings 32%	Savings = (1 - High Efficiency/Base)		32%	
Demand Savings 32%	Energy Savings		31 kWh / Year]
	Solar System Metered on Peak Demand		0.11 kW On Peak	KEMA 2008
	Demand Savings		32%	_

Program Year 4 July 1, 2012 to June 30, 2013

Faucet Aerator w/Standard Electric Resistance Water Heater (SERWH)

Energy per Day (BTU) = (Gallons per Day) x (lbs. per Gal.) x (Temp Rise) x (Energy to Raise Water Temp)

Hot Water needed per Person		13.3 Gallons per Day per Person	ШE
Average Occupants	x	3.77 Persons	KEMA 2008
Household Hot Water Usage	A	50.2 Gallons per Day	
nousenoid not water osage		Solz Gallons per Day	
Mass of Water Conversion		8.34 lbs/gal	
Finish Temperature of Water		130 deg. F Finish Temp	
Initial Temperature of Water	-	75 deg. F Initial Temp	
Temperature Rise		55 deg. F Temperature Rise	
Energy to Raise Water Temp Energy per Day (BTU) Needed in Tank		1.0 BTU / deg. F / lbs. 3,006 BTU/Day	-
Energy per Day (BTO) Needed In Tank	2	3,006 BTU/Day	
Energy per Day (BTU) Needed in Tank	2	3,006 BTU/Day	
BTU to kWh Energy Conversion		3,412 BTU/kWh	
Energy per Day (kWh)		6.7 kWh / Day	
Days per Month	x	30.4 Days per Month	
Energy (kWh) per Month		205 kWh / Month	
Days per Year	x	365 Days per Year	
Energy (kWh) Needed in Tank to Heat Water per Year		2,460 kWh / Year	
Elec. Res. Water Heater Efficiency	÷	0.90 COP	
Base SERWH Energy Usage per Year at the Meter		2,733 kWh / Year	KEMA 2008 - HECO
Utilization Factor		26%	Hot water used for showers (AMMA)
Base SERWH Energy Usage per Year at the Meter		711 kWh/Year	Energy Usage for showers
Base Case Aerator		2.2 GPM	
High Efficiency Case Aerator		1.5 GPM	
Savings = (1 - High Efficiency/Base)		32%	
Energy Savings		226 kWh / Year	7
SERWH Element Power Consumption		4.0 kW	
Coincidence Factor	х	<u>0.143</u> cf	
SERWH On Peak Demand		0.57 kW On Peak	
			8.6 Minutes per hour
Demand Savings		32%	KEMA 2008
Residential Aerator Demand Savings		0.18 kW Savings	

U Hawaii Energy

Program Year 4 July 1, 2012 to June 30, 2013

11.1.3 CFL Exchange

Version Date & Revision History

Draft date:	February 24, 2010
Effective date:	July 1, 2012
End date:	June 30, 2013

Referenced Documents:

- Energy and Peak Demand Impact Evaluation Report of the 2005-2007
- Demand Management Programs KEMA (KEMA 2005-07)
- Econorthwest TRM Review 6/23/10

TRM Review Actions:

- 6/23/10 Rec. # 8 Starting with PY2010, adjust the hours used per day for CFLs from 4.98 to 2.3 in order to be consistent with other literature. Conduct additional research to verify the most appropriate hours of operation for the Hawaii customer base, which can be incorporated into future years. Adopted.
- 6/23/10 Rec. # 9 Starting with PY 2010, adjust the peak coincidence factor from 0.334 to 0.12 to be consistent with the literature. Conduct additional research to verify the most appropriate coincidence factor for the Hawaii customer base, which can be incorporated into future years.-Adopted.
- 10/5/11 Currently Under Review.

Major Changes:

- Hours used per day for CFLs from 4.98 to 2.3 hrs.
- Peak coincidence factor from 0.334 to 0.12

Measure Description:

The replacement of incandescent screw-in lamps to standard spiral compact fluorescent lamps in Residential Single Family and Multi-family homes.

Lamps must comply with:

- Energy Star
- UL

Baseline Efficiencies:

Baseline usage is a 60W A-Shaped incandescent lamp with the energy consumption as follows:

Building Types	Demand Baseline(kW)	Energy Baseline (kWh)
Single Family	0.060	50.4
Multi Family	0.060	50.4

High Efficiency:

The high efficiency case is a 15W Spiral CFL with the energy consumption as follows:

Building Types	Demand High Efficiency (kW)	Energy High Efficiency (kWh)
Single Family	0.015	12.6
Multi Family	0.015	12.6

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings: CFL Gross Savings before operational adjustments:

Building Types	Demand Savings (kW)	Energy Savings (kWh)
Single Family	0.045	37.8
Multi Family	0.045	37.8

CFL Net Savings after operational adjustments:

Operational Factor	Adjustment Factor
Persistence Factor (pf)	1.0
Demand Coincidence Factor (cf)	0.12

Building Types	Demand Savings (kW)	Energy Savings (kWh)
Single Family	0.005	37.8
Multi Family	0.005	37.8

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms

CFL Exchange - Single and Multi Family Residen	tial H	ome	
60W Incandescent Lamp Demand		0.060 kW	
		2.30 Hours per Da	ý
	х	365 Days	839.5 Hours per Year
60W Incandescent Lamp Energy Usage		50.4 kWh per Year	
15W Compact Fluorescent Lamp Demand		0.015 kW	
		2.30 Hours per Da	ý
	х	365 Days	839.5 Hours per Year
15W Compact Fluorescent Lamp Energy Usage		12.6 kWh per Year	
60W Incandescent Lamp Energy Usage		50.4 kWh per Yea	
15W Compact Fluorescent Lamp Energy Usage	-	12.6 kWh per Yea	
CFL Savings Before Adjustment	s	37.8 kWh per Year	
		37.8 kWh per Yea	
Persistance Factor	х	<u>1.000</u> pf	0.0% Lamps not installed or replaced
CFL Energy Savings		37.8 kWh per Yea	
CFL Energy Savings		37.8 kWh / Year S	avings
60W Incandescent Lamp Demand		0.060 kW	
L5W Compact Fluorescent Lamp Demand	-	0.015 kW	
CFL Demand Reduction Before Adjustment	s	0.045 kW	
CFL Demand Reduction Before Adjustments		0.045 kW	
Coincidence Factor		0.120 cf	12.0% Lamps on between 5 and 9 p.m.
Persistance Factor	х	1.000 pf	0.0% Lamps not installed or replaced
CFL Demand Savings		0.005 kW	· ·
CFL Demand Savings		0.005 kW Savings	

Adjustments based on Evergreen Economics Recommendations (2/23/12)

Program Year 4 July 1, 2012 to June 30, 2013

11.1.4 Hawaii Energy Hero Audits

Version Date & Revision History

Draft date: February 21, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• Increased focus and penetration of direct install and educational outreach

Measure Description:

- Work with grass roots organization(s) to develop a residential educational presentation and a high level household energy audit based on use of a Belkin Conserve Insight or Kill-A-Watt style single outlet energy monitor.
- Identify individuals/homes who accept participation in the program with an energy challenge commitment to reduce energy consumed within their household.
- Participants will receive the energy monitor and possibly other energy savings devices for the purpose of performing the energy audit, applying energy savings devices and achieving energy savings.
- Provide the energy monitors and possibly other energy savings devices along with funds to the grass roots organizations. The organizations will distribute energy monitors and devices, provide training to recipient households and perform a high level audit with selected individuals.

Energy Savings:

Monthly Usage	625
Percent Savings	4%
Hours per Year	8760

Savings	Energy Savings (kWh)	Demand Savings (kW)
Monthly Savings	25	0.0029
Yearly Savings	300	0.0342

Measure Costs and Incentive Levels

Description	Unit Incentive		Incremental Cost	
Energy Hero Audits	\$	100.00	\$	400.00

Program Year 4 July 1, 2012 to June 30, 2013

11.2 Landlord / Tenant, AOAO Measures

11.2.1 Hawaii Energy Hero Landlord Program

Version Date & Revision History Draft date: Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 - Currently Under Review.

Major Changes:

• n/a

Measure Description:

<u>Energy Hero Landlord Program</u> – this program will be targeted at landlords who own affordable rental units. The program will offer such landlords comprehensive audit, RFP and other support to help with projects that will drive the energy cost of their renters down. The program will work with local lenders to provide project financing support in conjunction with the program.

<u>Custom SWH Proposals</u> – with a lack of projects generated from solicitation through a tiered or split incentive, the plan to offer more flexibility within a custom proposal framework was favored for PY12. This offer is budgeted for the equivalent of 484 SWH systems.

Baseline Efficiencies:

TBD

High Efficiency: TBD

Energy Savings: TBD

Incentives:

		Incentive	<u> Target Goal (kWh/year)</u>
•	Hawaii Energy Hero Landlord	\$0.25/kWh	5,212 kWh
•	Custom SWH Proposals	\$0.65/kWh	1,000,000 kWh

Hawaii Energy - Technical Reference Manual No. 2012 Program Year 4 July 1, 2012 to June 30, 2013

12 (BEEM) Business Energy Efficiency Measures

12.1 High Efficiency Lighting

12.1.1 Compact Fluorescent Lighting (CFL)

Version Date & Revision HistoryDraft date:February 24, 2011Effective date:July 1, 2012End date:June 30, 2013

Referenced Documents:

- Econorthwest TRM Review 6/23/10
- The California Energy Commission California Commercial End Use Summary
 <u>http://www.energy.ca.gov/ceus/</u>
- DEER The Database for Energy Efficient Resources
- Evergreen TRM Review 2/23/12

TRM Review Actions:

- 6/23/10 Rec. 15 For PY 2010, revise lighting hours of operation and peak coincidence factors, conduct additional research to evaluate the assumed hours of operation and coincidence factor for Hawaii customer base. Adopted
- 6/23/10 Rec. # 16 Consider developing commercial CFL measure categories by lamp size -Adopted.
- 10/5/11 Currently Under Review.

Major Changes:

- Wholesale replacement of prior TRM using DEER operational data and CEUS Commercial CFL Data
- Added interactive effect factors for energy and demand Table 3.

Description: A compact fluorescent lamp is a type of fluorescent lamp. Many CFL's are designed to replace an incandescent lamp and can fit in the existing light fixtures formerly used for incandescent lamps. CFLs typically replace 100 watts or less of incandescent.

CFL retrofit savings are determined by the delta wattage between the incandescent and CFL lamp, annual hours of operation, and the percent of peak period the lamps are on. The average delta wattage is typically a readily available value. The annual hours, persistence factor and peak percent are utilized based on DEER data.

Although the breakdown of lamp sizes installed is reasonable, the savings for this measure could be broken up based on lamp size. This would allow greater flexibility in matching claimed savings to actual projects completed. Savings for each wattage category are based on the savings for typical CFL lighting replacement projects from DEER, with the DEER wattage categories are shown below:

	CFL Wattage Reduction		
	<16W 16-26W >26W		
Average Savings (W)	32	60	76

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings: Using the DEER operational hours the energy savings are (see Table 3 for Interactive Effect):

	CFL Energy Reduction		
Building Type	<16W 16-26W >26W		
All Commercial	131.5	246.5	312.3
Misc. Commercial	131.5	246.5	312.3
Cold Storage	126.5	237.1	300.4
Education	80.7	151.2	191.5
Grocery	177.0	332.0	420.5
Health	196.8	369.0	467.4
Hotel/Motel	150.2	281.6	356.7
Misc. Industrial	130.4	244.5	309.7
Office	85.4	160.1	202.7
Restaurant	160.5	300.8	381.1
Retail	128.0	240.0	304.0
Warehouse	126.5	237.1	300.4

Demand Savings: Using the CEUS coincidence factors the demand savings are (see Table 3 for Interactive Effect):

	CFL Demand Reduction			
Building Type	< 16W	16-26W	> 26W	
All Commercial	0.015	0.029	0.036	
Misc. Commercial	0.009	0.017	0.022	
Cold Storage	0.015	0.029	0.036	
Education	0.006	0.011	0.014	
Grocery	0.026	0.048	0.061	
Health	0.020	0.037	0.047	
Hotel/Motel	0.018	0.034	0.043	
Misc. Industrial	0.015	0.029	0.036	
Office	0.015	0.029	0.036	
Restaurant	0.023	0.043	0.054	
Retail	0.018	0.034	0.043	
Warehouse	0.014	0.026	0.032	

Program Year 4 July 1, 2012 to June 30, 2013

CFL Operational Hours and Peak Coincidence Factors:

Building Type	Hours of Operation ¹	Peak Coincidence Factor ²
All Commercial	4,325	0.50
Misc. Commercial	4,325	0.30
Cold Storage	4,160	0.50
Education	2,653	0.20
Grocery	5,824	0.85
Health	6,474	0.65
Hotel/Motel	4,941	0.60
Misc. Industrial	4,290	0.50
Office	2,808	0.50
Restaurant	5,278	0.75
Retail	4,210	0.60
Warehouse	4,160	0.45

Commercial Lighting Factors

¹ The Database for Energy Efficient Resources (DEER)

²California Commercial End Use Summary (CEUS)

Program Year 4 July 1, 2012 to June 30, 2013

Saving Algorithm: CFL - Commercial Use (16-26W All Commerci	al Ex	ample Calculation)	
Incandescent Lamp Demand		0.083 kW	
inoundocochi zump zomana		11.85 Hours per Day	
	х	365 Days	4,325.0 Hours per Year
Incandescent Lamp Energy Usage		359.0 kWh per Year	
Compact Fluorescent Lamp Demand		0.023 kW	
		11.85 Hours per Day	
	х	365 Days	4,325.0 Hours per Year
Compact Fluorescent Lamp Energy Usage		99.5 kWh per Year	
Incandescent Lamp Energy Usage		359.0 kWh per Year	
Compact Fluorescent Lamp Energy Usage	-	99.5 kWh per Year	
CFL Savings Before Adjustments		259.5 kWh per Year	
		259.5 kWh per Year	
Persistance Factor	х	0.950 pf	5.0% Lamps not installed or replaced back
		246.5 kWh per Year	
CFL Energy Savings		246.5 kWh / Year Savings	
Incandescent Lamp Demand		0.083 kW	
Compact Fluorescent Lamp Demand	-	0.023 kW	
CFL Demand Reduction Before Adjustments		0.060 kW	
CFL Demand Reduction Before Adjustments		0.060 kW	
Coincidence Factor		0.500 cf	50.0% Lamps on between 5 and 9 p.m.
Persistance Factor	х	0.950 pf	5.0% Lamps not installed or replaced back
		0.029 kW	
CFL Demand Savings		0.029 kW Savings	

Measure

3 years (DEER)

Unit Incentive/Incremental Cost

Incentive = \$2/unit

Program Year 4 July 1, 2012 to June 30, 2013

CFL - Military Homes

Military CFL - Single and Multi Family Residenti	al Home	
60W Incandescent Lamp Demand	0.060 kW	
·····		Updated number based on EMV 23 Feb 12. 2.3
	3.45 Hours per Day	hours (residential number) multiplied by 1.5.
	x 365 Days	1,259.3 Hours per Year
60W Incandescent Lamp Energy Usage	75.6 kWh per Year	
15W Compact Fluorescent Lamp Demand	0.015 kW	
	3.45 Hours per Day	
	x 365 Days	1,259.3 Hours per Year
15W Compact Fluorescent Lamp Energy Usage	18.9 kWh per Year	
60W Incandescent Lamp Energy Usage	75.6 kWh per Year	
15W Compact Fluorescent Lamp Energy Usage	- 18.9 kWh per Year	
CFL Savings Before Adjustments	56.7 kWh per Year	
	56.7 kWh per Year	
Persistance Factor	x 0.800 pf	20.0% Lamps not installed or returned
CFL Energy Savings	45.3 kWh per Year	
CFL Energy Savings	45.3 kWh / Year Savings	
60W Incandescent Lamp Demand	0.060 kW	
15W Compact Fluorescent Lamp Demand	- 0.015 kW	
CFL Demand Reduction Before Adjustments	0.045 kW	
CFL Demand Reduction Before Adjustments	0.045 kW	
Coincidence Factor	0.120 cf	12.0% Lamps on between 5 and 9 p.m.
Persistance Factor	<u>x 0.800</u> pf	20.0% Lamps not installed or returned
CFL Demand Savings	0.004 kW	
CFL Demand Savings	0.004 kW Savings	

Program Year 4 July 1, 2012 to June 30, 2013

12.1.2 T12 to standard T8 (Magnetic Ballast)

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Energy and Peak Demand Impact Evaluation Report of the 2005-2007
- Demand Management Programs KEMA (KEMA 2005-07).
- Econorthwest TRM Review 6/23/10
- DEER The Database for Energy Efficient Resources
- The California Energy Commission California Commercial End Use Summary
 <u>http://www.energy.ca.gov/ceus/</u>
- Evergreen TRM Review 2/23/12

TRM Review Actions:

- 6/23/10 Rec. #18 Break down T8 savings by lamp length Adopted
- 10/5/11 Currently Under Review.

Major Changes:

- Wholesale replacement of prior TRM using DEER operational data and CEUS Commercial Data
- Added interactive effect factors for energy and demand Table 3.

Description: This measure involves the replacement of an existing T12 lamp with a new high efficiency T8 lamp and T12 lamp to standard T8 (magnetic ballast), and savings are calculated assuming standard T12 lamps and magnetic ballasts. The average watt savings per lamp for replacing 2', 3', 4', and 8' lamps is calculated by weighting the average toward those replacements that most likely to occur; largely 4' 2 lamp and 4' 4 lamp fixtures. Based on the assumed fixture distribution, the average savings per lamp is 18.6W.

Base Efficiency

The base case efficiency is T12 lamp with magnetic ballast.

High Efficiency

The high efficiency case is a T8 lamp with electronic ballast or standard T8 lamp with magnetic ballast.

Program Year 4 July 1, 2012 to June 30, 2013

Demand Savings: Using the CEUS coincidence factors the demand savings are (see Table 3 for Interactive Effect):

	Demand Savings (kW)			
Building Type	2' Lamp	3' Lamp	4' Lamp	8' Lamp
All Commercial	0.0040	0.0070	0.0100	0.0200
Misc. Commercial	0.0020	0.0040	0.0060	0.0120
Cold Storage	0.0040	0.0070	0.0100	0.0200
Education	0.0020	0.0030	0.0040	0.0080
Grocery	0.0070	0.0110	0.0160	0.0340
Health	0.0050	0.0080	0.0130	0.0260
Hotel/Motel	0.0050	0.0080	0.0120	0.0240
Misc. Industrial	0.0040	0.0070	0.0100	0.0200
Office	0.0040	0.0070	0.0100	0.0200
Restaurant	0.0060	0.0100	0.0140	0.0300
Retail	0.0050	0.0080	0.0120	0.0240
Warehouse	0.0040	0.0060	0.0090	0.0180

Energy Savings: Using the DEER operational hours the energy savings are (see Table 3 for Interactive Effect):

	Energy Savings (kWh/year)			
Building Type	2' Lamp	3' Lamp	4' Lamp	8' Lamp
All Commercial	35.9	56.4	83.2	170.8
Misc. Commercial	35.9	56.4	83.2	170.8
Cold Storage	34.5	54.3	80.0	164.3
Education	22.0	34.6	51.0	104.8
Grocery	48.3	76.0	112.0	230
Health	53.7	84.5	124.5	255.7
Hotel/Motel	41.0	64.5	95.0	195.2
Misc. Industrial	35.6	56.0	82.5	169.5
Office	23.3	36.6	54.0	110.9
Restaurant	43.8	68.9	101.5	208.5
Retail	34.9	54.9	81.0	166.3
Warehouse	34.5	54.3	80.0	164.3

Incentive

Equipment Description	All Commercial Demand (kW) Savings	All Commercial Energy Savings (kWh)	Current Incentive
2'T12 - 2'T8	0.004	35.9	\$4.80
3'T12 - 3'T8	0.007	56.4	\$5.20
4'T12 - 4'T8	0.01	83.2	\$5.60
8'T12 - 8'T8	0.02	170.8	\$7.20

Program Year 4 July 1, 2012 to June 30, 2013

12.1.3 T12/T8 to T8 Low Wattage

Version Date & Revision History Draft date: February 24, 2011

Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Energy and Peak Demand Impact Evaluation Report of the 2005-2007
- Demand Management Programs (KEMA 2005-07).
- Econorthwest TRM Review 6/23/10
- DEER-The Database for Energy Efficient Resources
- The California Energy Commission California Commercial End Use Summary <u>http://www.energy.ca.gov/ceus/</u>
- Evergreen TRM Review 2/23/12

TRM Review Actions:

- 6/23/10 Rec. #no number- Adjust with DEER/CEUS usage characteristics Adopted
- 10/5/11 Currently Under Review.

Major Changes:

- Adjustment of hours and coincidence factors of prior TRM using DEER operational data and CEUS Commercial Data
- Added interactive effect factors for energy and demand Table 3.

Description:

This measure involves the replacement of 4' standard T8 with low wattage T8 fixtures and electronic ballasts.

Base Efficiency

The baseline T8 fixtures are assumed to be standard T8 (32W) lamps with standard magnetic ballasts.

High Efficiency

The high efficiency case is super T8 low wattage (25W/28W) lamps with high performance electronic ballasts.

Energy and Demand Savings:

The Base Watts and New Watts values are taken from Appendix B of the KEMA Report Table B-2. Appendix G of the KEMA report gives the same value for all Building Types. The following table shows the savings for low wattage T8 lamps and ballast compared to standard T8 lamps.

Program Year 4 July 1, 2012 to June 30, 2013

Energy and Demand Savings and Incentive Levels: Using the DEER operational hours (Energy) and the CEUS coincidence factors (Demand) the savings are the following (see Table 3 for Interactive Effect):

T8 to low wattage T8 with HEEB				
	Demand	Energy		
	(kW)	(kWh)		
Building Type	Savings	Savings		
All Commercial	0.009	78.1		
Misc. Commercial	0.005	78.1		
Cold Storage	0.009	75.1		
Education	0.004	47.9		
Grocery	0.015	105.1		
Health	0.012	116.9		
Hotel/Motel	0.011	89.2		
Misc. Industrial	0.009	77.4		
Office	0.009	50.7		
Restaurant	0.014	95.3		
Retail	0.011	76.0		
Warehouse	0.008	75.1		

Commercial Lighting Factors

Building Type	Hours of	Peak
All Commercial	4,325	0.50
Misc. Commercial	4,325	0.30
Cold Storage	4,160	0.50
Education	2,653	0.20
Grocery	5,824	0.85
Health	6,474	0.65
Hotel/Motel	4,941	0.60
Misc. Industrial	4,290	0.50
Office	2,808	0.50
Restaurant	5,278	0.75
Retail	4,210	0.60
Warehouse	4,160	0.45

¹ The Database for Energy Efficient Resources (DEER)

²California Commercial End Use Summary (CEUS)

Incentive

Equipment Description	All Commercial Demand (kW) Savings	All Commercial Energy Savings (kWh)	Current Incentive	¢ /kWh
4'T12 - LW 4'T8	0.01	78.1	\$8.40	\$0.11
4'T8 - LW 4'T8	0.006	78.1	\$5.60	\$0.07

Program Year 4 July 1, 2012 to June 30, 2013

12.1.4 Delamping

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Energy and Peak Demand Impact Evaluation Report of the 2005-2007
- Demand Management Programs KEMA (KEMA 2005-07).
- Econorthwest TRM Review 6/23/10
- DEER-The Database for Energy Efficient Resources
- The California Energy Commission California Commercial End Use Summary <u>http://www.energy.ca.gov/ceus/</u>
- Evergreen TRM Review 2/23/12

TRM Review Actions:

- 6/23/10 Rec. #20 Break down the savings by lamp size. Adopted
- 10/5/11 Currently Under Review.

Major Changes:

- Adjustment of hours and coincidence factors of prior TRM using DEER operational data and CEUS Commercial Data
- Added interactive effect factors for energy and demand Table 3.

Description: The ballasts are re-wired for de-lamping.

Base Efficiency

The base case is no delamping

High Efficiency

The savings for this measure are determined by calculating the average watt reduction by removing either a 32 W T8, or a standard 40 W or reduced wattage 34 W T12 lamp from a standard ballast fixture, magnetic energy saving ballast fixture, or electric ballast fixture. This measure covers 2', 4' and 8' fixtures.

Incremental Cost

\$4 per lamp

Program Year 4 July 1, 2012 to June 30, 2013

Energy and Demand Savings – see Table 3 for Interactive Effect.

	Delamping Avg. Wattage Reduction				
	2' Lamp 3' Lamp 4' Lamp 8' Lamp				
Average	18.5	27.5	34.5	77.0	

	Delamping Energy Reduction				
Building Type	2' Lamp	3' Lamp	4' Lamp	8' Lamp	
All Commercial	80.0	118.9	149.2	333.0	
Misc. Commercial	80.0	118.9	149.2	333.0	
Cold Storage	77.0	114.4	143.5	320.3	
Education	49.1	73.0	91.5	204.3	
Grocery	107.7	160.2	200.9	448.4	
Health	119.8	178.0	223.4	498.5	
Hotel/Motel	91.4	135.9	170.5	380.5	
Misc. Industrial	79.4	118.0	148.0	330.3	
Office	51.9	77.2	96.9	216.2	
Restaurant	97.6	145.1	182.1	406.4	
Retail	77.9	115.8	145.2	324.2	
Warehouse	77.0	114.4	143.5	320.3	

	Delamping Demand Reduction			
Building Type	2' Lamp	3' Lamp	4' Lamp	8' Lamp
All Commercial	0.009	0.014	0.017	0.039
Misc. Commercial	0.006	0.008	0.010	0.023
Cold Storage	0.009	0.014	0.017	0.039
Education	0.004	0.006	0.007	0.015
Grocery	0.016	0.023	0.029	0.065
Health	0.012	0.018	0.022	0.050
Hotel/Motel	0.011	0.017	0.021	0.046
Misc. Industrial	0.009	0.014	0.017	0.039
Office	0.009	0.014	0.017	0.039
Restaurant	0.014	0.021	0.026	0.058
Retail	0.011	0.017	0.021	0.046
Warehouse	0.008	0.012	0.016	0.035

Commercial Lighting Factors

Building Type	Hours of Operation ¹	Peak Coincidence Factor ²
All Commercial	4,325	0.50
Misc. Commercial	4,325	0.30
Cold Storage	4,160	0.50
Education	2,653	0.20
Grocery	5,824	0.85
Health	6,474	0.65
Hotel/Motel	4,941	0.60
Misc. Industrial	4,290	0.50
Office	2,808	0.50
Restaurant	5,278	0.75
Retail	4,210	0.60
Warehouse	4,160	0.45
1		

¹ The Database for Energy Efficient Resources (DEER)

²California Commercial End Use Summary (CEUS)

Program Year 4 July 1, 2012 to June 30, 2013

Equipment Description	All Commercial Demand (kW) Savings	All Commercial Energy Savings (kWh)	Current Incentive
Delamping 2'	0.009	80	\$2.50
Delamping 3'	0.014	118.9	N/A
Delamping 4'	0.017	149.2	\$5.00
Delamping 8'	0.039	333	\$7.50

Program Year 4 July 1, 2012 to June 30, 2013

12.1.5 Delamping with Reflectors

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- New Buildings Institute, Advanced Lighting Guidelines, 2003
- Energy and Peak Demand Impact Evaluation Report of the 2005-2007
- Demand Management Programs KEMA (KEMA 2005-07).
- Econorthwest TRM Review 6/23/10
- DEER-The Database for Energy Efficient Resources
- The California Energy Commission California Commercial End Use Summary
 <u>http://www.energy.ca.gov/ceus/</u>
- Evergreen TRM Review 2/23/12

TRM Review Actions:

- 6/23/10 Rec. #20 Break down the savings by lamp size. Adopted
- 10/5/11 Currently Under Review.

Major Changes:

- Adjustment of hours and coincidence factors of prior TRM using DEER operational data and CEUS Commercial Data
- Added interactive effect factors for energy and demand Table 3.

Description: Putting reflectors on the ballasts allows for more light, with less lamps. The ballasts are rewired for de-lamping.

Base Case

The base efficiency case is no delamping with reflectors.

High Efficiency

The savings for this measure are determined by calculating the average watt reduction by removing either a 32 W T8, or a standard 40 W or reduced wattage 34 W T12 lamp from a standard ballast fixture, magnetic energy saving ballast fixture, or electric ballast fixture.

Program Year 4 July 1, 2012 to June 30, 2013

Energy and Demand Savings: The wattage per lamp varies greatly depending on the size of the lamp. See Table 3 for Interactive Effect.

	Demand Savings (kW)			
Building Type	2' Lamp	3' Lamp	4' Lamp	8' Lamp
All Commercial	0.0090	0.0140	0.0170	0.0390
Misc. Commercial	0.0060	0.0080	0.0100	0.0230
Cold Storage	0.0090	0.0140	0.0170	0.0390
Education	0.0040	0.0060	0.0070	0.0150
Grocery	0.0160	0.0230	0.0290	0.0650
Health	0.0120	0.0180	0.0220	0.0500
Hotel/Motel	0.0110	0.0170	0.0210	0.0460
Misc. Industrial	0.0090	0.0140	0.0170	0.0390
Office	0.0090	0.0140	0.0170	0.0390
Restaurant	0.0140	0.0210	0.0260	0.0580
Retail	0.0110	0.0170	0.0210	0.0460
Warehouse	0.0080	0.0120	0.0160	0.0350

	Energy Savings (kWh/year)			
Building Type	2' Lamp	3' Lamp	4' Lamp	8' Lamp
All Commercial	80.0	118.9	149.2	333
Misc. Commercial	80.0	118.9	149.2	333
Cold Storage	77.0	114.4	143.5	320.3
Education	49.1	73.0	91.5	204.3
Grocery	107.7	160.2	200.9	448.4
Health	119.8	178.0	223.4	498.5
Hotel/Motel	91.4	135.9	170.5	380.5
Misc. Industrial	79.4	118.0	148.0	330.3
Office	51.9	77.2	96.9	216.2
Restaurant	97.6	145.1	182.1	406.4
Retail	77.9	115.8	145.2	324.2
Warehouse	77.0	114.4	143.5	320.3

Incentives

Equipment Description	All Commercial Demand (kW) Savings	All Commercial Energy Savings (kWh)	Current Incentive
Delamping w/ Refl. 2'	0.009	80	\$5.00
Delamping w/ Refl. 3'	0.014	118.9	N/A
Delamping w/ Refl. 4'	0.017	149.2	\$10.00
Delamping w/ Refl. 8'	0.039	333	\$15.00

Program Year 4 July 1, 2012 to June 30, 2013

12.1.6 LED Refrigerated Case Lighting

Version Date & Revision History

Draft date: October 3, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description: TBD

Baseline Efficiencies: 40W F40 T8 Linear Fluorescent Lamp

High Efficiency: 23W LED Linear Lamp

Energy Savings:

223.6 kWh and .036 kW EM&V recommends demand savings at 0.023 kW (note: program cannot mathematically come up with this figure – see algorithm next page).

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms

	LED Refrigerated Case Lighting	
Base	40W F40 T8 Linear Fluorescent Lamp	40.0 W 0.040 kW 17 Hours per Day
	40W F40 T8 kWh/Year	x 365 Days 6205 Hours per Year 248.2 kWh per Year
Enhanced	23W LED Linear Lamp	0.023 kW 17 Hours per Day
	LED Fixture kWh/Year	× 365 Days 6205 Hours per Year 142.7 kWh per Year
	40W F40 T8 kWh/Year LED Fixture kWh/Year LED Savings Before Adjustments	248.2 kWh per Year - 142.7 kWh per Year 105.5 kWh per Year
	Demand Compressor Load w/ Existing F40 T8	0.0448 kW 17 Hours per Day <u>x 365</u> Days 6205 Hours per Year 278.0 kWh per Year
	Demand Compressor Load w/ LED	0.0258 kW 17 Hours per Day <u>× 365</u> Days 6205 Hours per Year 159.8 kWh per Year
	kWh Reduction	105.5 kWh per Year
	% of Lighting Savings reduced from Compressor Load	× 100%
	Cooling Energy Reduced from System	105 kWh per Year
	Lighting Contribution to Cooling Energy Reduced from System Refrigerator Compressor Efficiency Compressor Energy Reduced	105 kWh per Year x 1.12 COP 118.1 kWh per Year
	LED Savings Before Adjustments Compressor Energy Reduced	105.5 kWh per Year + 118.1 kWh per Year
	Fixture Savings Per Year	223.6 kWh per Year
	LED Peak Demand Savings per Lamp	0.036 kW Savings per Lamp
Base Enhanced	F40 T8 Linear Fluorescent Fixture Demand kW LED Demand kW	0.085 kW - 0.049 kW 0.036 kW Savings
	Total Annual Energy Savings (including compressor savings) per Lamp	223.6 Annual Savings (kWh) per Lamp
Base Enhanced	F40 T8 Annual Energy Use LED Case Lighting Fixtures Annual Energy Use LED Energy Reduction	526.184 kWh per Lamp - 302.556 kWh per Lamp 223.6 kWh per Lamp

Program Year 4 July 1, 2012 to June 30, 2013

12.1.7 LED

Version Date & Revision History Draft date: November 30, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- The Database for Energy Efficient Resources (DEER)
- California Commercial End Use Summary (CEUS)
- Evergreen TRM Review 2/23/12

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

- 11/30/11 Moved LED Product Customized Process measure to addendum (section 16.2.1) and created new prescriptive LED measure.
- Added interactive effect factors for energy and demand Table 3.
- Matched energy/demand savings for LED ENERGY STAR approved recessed-can retrofit kit to PAR30 short/long neck dimmable/non-dimmable.

Measure Description: Light Emitting Diodes (LED) are a lighting technology that utilizes solid-state technology to produce light, opposed to fluorescent or incandescent lighting sources. In general, LED technology will provide energy levels 15% of a comparable incandescent lamp (15W to a 100W equivalent).

								25%
Lamp	Base Case Incandescent Demand (kW)	Percent Incandescent Base	Base Case CFL Demand (kW)	Percent CFL Base	Base Mix Demand (kW)	Enhanced Case LED Demand (kW)	<i>LED</i> Demand Savings (kW)	<i>Dimmable LED</i> Demand Savings (kW)
MR16	0.0500	100%	n/a	0%	0.0500	0.0065	0.0435	0.0326
PAR20 8 deg.	0.0600	80%	0.0150	20%	0.0510	0.0086	0.0424	0.0318
PAR20 25 deg.	0.0550	80%	0.0130	20%	0.0466	0.0090	0.0376	0.0282
PAR30 Short Neck or ENERGY STAR								
approved recessed-can retrofit kit	0.0750	80%	0.0200	20%	0.0640	0.0163	0.0477	0.0358
PAR30 Long Neck or ENERGY STAR								
approved recessed-can retrofit kit	0.0750	80%	0.0200	20%	0.0640	0.0163	0.0477	0.0358
PAR38 25 deg.	0.0750	80%	0.0200	20%	0.0640	0.0203	0.0437	0.0328
A-19	0.0600	20%	0.0150	80%	0.0240	0.0078	0.0162	0.0122

Baseline & High Efficiency:

Energy Savings by Building/Usage Type (see Table 3 for Interactive Effect):

Dimmable

				Dimmable Commercial Lighting												
			MR	16	PAR20	8 deg.	PAR20	25 deg.	0.00000000	hort Neck or ENERGY STAR ed recessed-can retrofit kit	and a second sec	ong Neck or ENERGY STAR d recessed-can retrofit kit	PAR38	25 deg.	A-	19
Building Type	Hours of Operation ²	Peak Coincidence Factor ²	Energy Savings (kWh/year)	Demand Savings (kW)	Energy Savings (kWh/year)	Demand Savings (kW)	Energy Savings (kWh/year)	Demand Savings (kW)	Energy Savings (kWh/year)	Demand Savings (kW)	Energy Savings (kWh/year)	Demand Savings (kW)	Energy Savings (kWh/year)	Demand Savings (kW)	Energy Savings (kWh/year)	Demand Savings (kW)
All Commercial	4,325	0.50	188.1	0.0218	183.4	0.0212	162.6	0.0188	206.3	0.0239	206.3	0.0239	189.0	0.0219	70.1	0.0081
Misc. Commercial	4,325	0.30	188.1	0.0131	183.4	0.0127	162.6	0.0113	206.3	0.0143	206.3	0.0143	189.0	0.0131	70.1	0.0049
Cold Storage	4,160	0.50	181.0	0.0218	176.4	0.0212	156.4	0.0188	198.4	0.0239	198.4	0.0239	181.8	0.0219	67.4	0.0081
Education	2,653	0.20	115.4	0.0087	112.5	0.0085	99.8	0.0075	126.5	0.0095	126.5	0.0095	115.9	0.0087	43.0	0.0032
Grocery	5,824	0.85	253.3	0.0370	246.9	0.0360	219.0	0.0320	277.8	0.0405	277.8	0.0405	254.5	0.0371	94.3	0.0138
Health	6,474	0.65	281.6	0.0283	274.5	0.0276	243.4	0.0244	308.8	0.0310	308.8	0.0310	282.9	0.0284	104.9	0.0105
Hotel/Motel	4,941	0.60	214.9	0.0261	209.5	0.0254	185.8	0.0226	235.7	0.0286	235.7	0.0286	215.9	0.0262	80.0	0.0097
Misc. Industrial	4,290	0.50	186.6	0.0218	181.9	0.0212	161.3	0.0188	204.6	0.0239	204.6	0.0239	187.5	0.0219	69.5	0.0081
Office	2,808	0.50	122.1	0.0218	119.1	0.0212	105.6	0.0188	133.9	0.0239	133.9	0.0239	122.7	0.0219	45.5	0.0081
Restaurant	5,278	0.75	229.6	0.0326	223.8	0.0318	198.5	0.0282	251.8	0.0358	251.8	0.0358	230.6	0.0328	85.5	0.0122
Retail	4,210	0.60	183.1	0.0261	178.5	0.0254	158.3	0.0226	200.8	0.0286	200.8	0.0286	184.0	0.0262	68.2	0.0097
Warehouse	4,160	0.45	181.0	0.0196	176.4	0.0191	156.4	0.0169	198.4	0.0215	198.4	0.0215	181.8	0.0197	67.4	0.0073

¹ The Database for Energy Efficient Resources (DE ²California Commercial End Use Summary (CEUS)

Program Year 4 July 1, 2012 to June 30, 2013

Non-Dimmable

				Non-Dimmable Commercial Lighting												
									PAR30 S	hort Neck or ENERGY STAR	PAR30 Lo	ong Neck or ENERGY STAR				
			MR	16	PAR20	8 deg.	PAR20	25 deg.	approv	ed recessed-can retrofit kit	approve	d recessed-can retrofit kit	PAR38	25 deg.	A-	19
Building Type	Hours of Operation ²	Peak Coincidence Factor ²	Energy Savings (kWh/year)	Demand Savings (kW)	Energy Savings (kWh/year)	Demand Savings (kW)	Energy Savings (kWh/year)	Demand Savings (kW)	Energy Savings (kWh/year)	Demand Savings (kW)	Energy Savings (kWh/year)	Demand Savings (kW)	Energy Savings (kWh/year)	Demand Savings (kW)	Energy Savings (kWh/year)	Demand Savings (kW)
All Commercial	4,325	0.50	141.1	0.0163	137.5	0.0159	122.0	0.0141	154.7	0.0179	154.7	0.0179	141.8	0.0164	52.5	0.0061
Misc. Commercial	4,325	0.30	141.1	0.0098	137.5	0.0095	122.0	0.0085	154.7	0.0107	154.7	0.0107	141.8	0.0098	52.5	0.0036
Cold Storage	4,160	0.50	135.7	0.0163	132.3	0.0159	117.3	0.0141	148.8	0.0179	148.8	0.0179	136.3	0.0164	50.5	0.0061
Education	2,653	0.20	86.6	0.0065	84.4	0.0064	74.8	0.0056	94.9	0.0072	94.9	0.0072	87.0	0.0066	32.2	0.0024
Grocery	5,824	0.85	190.0	0.0277	185.2	0.0270	164.2	0.0240	208.4	0.0304	208.4	0.0304	190.9	0.0279	70.8	0.0103
Health	6,474	0.65	211.2	0.0212	205.9	0.0207	182.6	0.0183	231.6	0.0233	231.6	0.0233	212.2	0.0213	78.7	0.0079
Hotel/Motel	4,941	0.60	161.2	0.0196	157.1	0.0191	139.3	0.0169	176.8	0.0215	176.8	0.0215	161.9	0.0197	60.0	0.0073
Misc. Industrial	4,290	0.50	140.0	0.0163	136.4	0.0159	121.0	0.0141	153.5	0.0179	153.5	0.0179	140.6	0.0164	52.1	0.0061
Office	2,808	0.50	91.6	0.0163	89.3	0.0159	79.2	0.0141	100.5	0.0179	100.5	0.0179	92.0	0.0164	34.1	0.0061
Restaurant	5,278	0.75	172.2	0.0245	167.8	0.0239	148.8	0.0212	188.8	0.0268	188.8	0.0268	173.0	0.0246	64.1	0.0091
Retail	4,210	0.60	137.4	0.0196	133.9	0.0191	118.7	0.0169	150.6	0.0215	150.6	0.0215	138.0	0.0197	51.2	0.0073
Warehouse	4.160	0.45	135.7	0.0147	132.3	0.0143	117.3	0.0127	148.8	0.0161	148.8	0.0161	136.3	0.0147	50.5	0.0055

¹ The Database for Energy Efficient Resources (DEEI ²California Commercial End Use Summary (CEUS)

Equipment Qualifications: Incentivized LED lamps must be Energy Star labeled.

Incentives

	LED	Dimmable LED
Туре	Incentive	Incentive
MR16	\$17.50	\$20.00
PAR208 deg.	\$17.50	\$20.00
PAR20 25 deg.	\$17.50	\$20.00
PAR30 Short Neck	\$17.50	\$20.00
PAR30 Long Neck	\$17.50	\$20.00
PAR38 25 deg.	\$17.50	\$20.00
A-19	\$5.00	\$7.50

Hawaii Energy

Program Year 4 July 1, 2012 to June 30, 2013

12.1.8 LED Exit Signs

Version Date & Revision History

Draft date:	January, 2010
Effective date:	July 1, 2012
End date:	June 30, 2013

Referenced Documents:

- Energy and Peak Demand Impact Evaluation Report of the 2005-2007 Demand Management Programs – KEMA (KEMA 2005-07). <u>http://www.energystar.gov/ia/business/small_business/led_exitsigns_techsheet.pdf</u>
- Econorthwest TRM Review 6/23/10

TRM Review Actions:

- 6/23/10 No Changes
- 10/5/11 Currently Under Review.

Major Changes:

• No changes

Measure Description:

Replacement of Incandescent Exit Signs with LED Exit Signs. Savings are equal across all building use types.

Baseline Efficiencies:

Demand Baseline has been determined by technical specifications of an incandescent exit sign, which typically holds two 20 W bulbs (40 W). The Energy Baseline is based on 24/7 operation of the sign (8,760 hours).

Building Types	Demand Baseline(kW)	Energy Baseline (kWh)
All Types	0.040	351

High Efficiency:

The typical technical specification on an LED Exit Sign (through energystar.gov) claims "less than 5W" of Demand. The Energy High Efficiency figure is based on 24/7 operation (8,760 hours).

Building Types	Demand High Efficiency (kW)	Energy High Efficiency (kWh)
All Types	0.005	44

Final Savings:

The Impact Evaluation Report by KEMA states that LED exit signs are expected to have high realization ratios and that measured savings were typically 100% of claimed savings. These figures match the suggested savings by the KEMA report.

Building Types	Demand Savings (kW)	Energy Savings (kWh)
All Types	0.035	307

Program Year 4 July 1, 2012 to June 30, 2013

Saving Algorithm:

Exit Signs - Businesses			
Incandescent Exit Sign		0.040 kW	
loundeedent Exit ergit		24.00 Hours per Day	
	х	365 Days	8,760 Hours per Year
ncandescent Exit Sign		350.4 kWh per Year	-,
candeboont Exit orgin		oooliy kimper rear	
ED Exit Sign		0.005 kW	
		24.00 Hours per Day	
	x	365 Days	8,760 Hours per Year
ED Exit Sign		43.8 kWh per Year	
0			
Incandescent Exit Sign		350.4 kWh per Year	
ED Exit Sign	-	43.8 kWh per Year	
Savings Before Adjustmen	ts	306.6 kWh per Year	
с ,			
		306.6 kWh per Year	
Persistance Factor	х	1.000_pf	0.0% Lamps not inst
		307 kWh per Year	
FL Energy Savings		307 kWh / Year Savings	
andescent Exit Sign		0.040 kW	
ED Exit Sign	-	0.005 kW	
Demand Reduction Before Adjustmen	uts	0.035 kW	
2 strand requision points Aujustinish		0.000 811	
emand Reduction Before Adjustments		0.035 kW	
oincidence Factor		1.000 cf	100.0% Lamps on betw
ersistance Factor	х	1.000 pf	0.0% Lamps not inst
		0.035 kW	
		0.025 100 6-2-2-2-2	
FL Demand Savings		0.035 kW Savings	

Incentive \$25

Program Year 4 July 1, 2012 to June 30, 2013

12.1.10 HID Pulse Start Metal Halide

Version Date & Revision History

Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Energy and Peak Demand Impact Evaluation Report of the 2005-2007
- Demand Management Programs KEMA (KEMA 2005-07).
- Econorthwest TRM Review 6/23/10
- DEER-The Database for Energy Efficient Resources
- The California Energy Commission California Commercial End Use Summary <u>http://www.energy.ca.gov/ceus/</u>
- Evergreen TRM Review 2/23/12

TRM Review Actions:

- 6/23/10 Rec. #17 Break down savings by wattage ranges pulse start metal halides- Adopted
- 10/5/11 Currently Under Review.

Major Changes:

- Wholesale replacement of prior TRM using DEER operational data and CEUS Commercial Data
- Added interactive effect factors for energy and demand Table 3.
- Updated document regarding persistence and coincident factors based on EM&V review.

Referenced Documents:

Description: Traditional probe-start metal halide lamps do not use an igniter and require three electrical contacts to ignite the gas and remain lit. Recently developed pulse-start metal halide lamps use only two contacts and use an igniter located inside the ballast pod. Pulse-start lamps offer higher light output per unit of electric power. Multiple Wattages of Pulse-Start Metal Halides are installed. The most common have rated wattages between 100 and 250, with the majority of installations being 250 W.

Incremental Cost

\$150 (320W PS Replacing 400W HID)

Base Case Probe start metal halide

High Efficiency

Lower wattage pulse start metal halide

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings

The savings for pulse start metal halide fixtures are calculated based on a wattage savings for the replacement of a metal halide fixture with a smaller wattage pulse start metal halide fixture. Based on the wattages provided, it appears that it was assumed that a 175W metal halide fixture would be replaced with a 100W pulse start metal halide fixture, 250W metal halide fixture would be replaced with either a 150W or 175W pulse start metal halide fixture, and a 400W metal halide would be replaced with a 250W pulse start metal halide fixture. Based on the expected fixture wattages and breakdown of fixture installations, an average savings of 123W per fixture was assumed.

Measure	Metal Halide (W)	Pulse Start Metal Halide (W)
Equivalent	175	100
Replacement	250	150 or 175
	400	250

Savings

	Pulse Start Wattage Reduction							
	<=100W 101-200W 201-350							
Average	48	70	109					

Operating hours assumed 4,943 hr/year.

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings: Using the DEER operational hours the energy savings are (see Table 3 for Interactive Effect):

	Pulse Start Energy Reduction							
Building Type	<=100W	101-200W	201-350W					
All Commercial	209.0	302.0	471.4					
Misc. Commercial	209.0	302.0	471.4					
Cold Storage	201.1	290.4	453.4					
Education	128.2	185.2	289.2					
Grocery	281.5	406.6	634.8					
Health	312.9	452.0	705.7					
Hotel/Motel	238.8	345.0	538.6					
Misc. Industrial	207.4	299.5	467.6					
Office	135.7	196.0	306.1					
Restaurant	255.1	368.5	575.3					
Retail	203.5	293.9	458.9					
Warehouse	201.1	290.4	453.4					

Demand Savings: Using the CEUS coincidence factors the demand savings are (see Table 3 for Interactive Effect):

	Pulse Start Demand Reduction										
Building Type	<=100W	101-200W	201-350W								
All Commercial	0.024	0.035	0.055								
Misc. Commercial	0.015	0.021	0.033								
Cold Storage	0.024	0.035	0.055								
Education	0.010	0.014	0.022								
Grocery	0.041	0.059	0.093								
Health	0.031	0.045	0.071								
Hotel/Motel	0.029	0.042	0.065								
Misc. Industrial	0.024	0.035	0.055								
Office	0.024	0.035	0.055								
Restaurant	0.036	0.052	0.082								
Retail	0.029	0.042	0.065								
Warehouse	0.022	0.031	0.049								

Program Year 4 July 1, 2012 to June 30, 2013

12.1.11 Sensors

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Reference Documents:

- BC Hydro report: Smart Strip electrical savings and usability, October 2008 (unit can only take one surge, then needs to be replaced)
- Plug Load Characterization Study for Southern California Edison. Prepared by Research Into Action (2010)
- Based on assumption that office equipment will be running during the peak period
- Assumes 2 weeks of vacation and 2 weeks of holidays for a total of 48 work weeks annually
- See Table 'Standby Power Consumption of Devices Using Smart Strip Plug Outlets'
- Standby loads sourced from Lawrence Berkeley National Laboratory http://standby.lbl.gov/summary-table.html. Hours of operation based on engineering estimations.

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

n/a

Measure Description

Plug load occupancy sensors are devices that control low wattage office equipment using an occupancy sensor. They typically use an infrared sensor to monitor movement, and use a smart strip to turn off connected devices, or put them in standby mode, when no one is present.

Definition of Efficient Equipment

In order for this characterization to apply, the installed equipment must be a 'smart' power strip with both control and peripheral outlets, and an occupancy sensor.

Definition of Baseline Equipment

The baseline assumes a mix of typical document station office equipment (printers, scanners, fax machines, etc.) each with uncontrolled standby load.

Deemed Savings for this Measure

Annual kWh Savings = 169 kWh/yr Demand kW Savings = 0

Deemed O&M Cost Adjustments

n/a

Coincidence Factor

_

Energy Savings

 ΔkWh = (WORKDAYS x $\Delta Wsleep$)/1000

Where:

U	Hawaii Energy - Technical Reference Manual No. 2012
Hawaii Energy	Program Year 4 July 1, 2012 to June 30, 2013
WORKDAYS	 Average number of workdays, or business days, in a year 240 (4)

 Δ Wsleep = The energy savings of devices plugged into the strip when in 'sleep' mode (Wh) = 704 (5)

Coincident Peak Demand Savings

∆kW = 0

Deemed O&M Cost Adjustment Calculation

n/a

Reference Tables

Standby Power Consumption for Devices Using Smart Strip Plug Outlets (6) (All values in Watts)

Computer Peripherals	Connected Load when 'On'	Connected Load in 'Sleep'	Hours in Sleep Mode	Daily Savings
Laser Printer	131	2	4	516
Multi-function device, laser				188
(scanner, fax)	50	3	4	
			Total	704

Lifetime of Efficient Equipment

The estimated useful life for a smart strip plug outlet is 8 years (1)

Measure Cost

The incremental cost for this measure is assumed to be \$70 (2)

Program Year 4 July 1, 2012 to June 30, 2013

12.1.12 Stairwell Bi-Level Dimming Fluorescent

Version Date & Revision History Draft date: Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

This measure is evaluated and incentivized base on a customized approach comparing base case to enhanced case scenarios along with studies from Seattle City Lights based on reduced run time and height and type of building.

Program Year 4 July 1, 2012 to June 30, 2013

12.1.13 Daylighting

Version Date & Revision History Draft date: Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

This measure is currently evaluated and incentivized base on custom program with pre and post data logging.

Program Year 4 July 1, 2012 to June 30, 2013

12.2 High Efficiency HVAC

12.2.1 Chiller

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Econorthwest TRM Review 6/23/10
- IECC 2006

TRM Review Actions:

- 6/23/10 Rec. #23 Utilize IECC 2006 Efficiencies as the Baseline Efficiency and Efficient Packaged
 - Unit 15% better than IECC 2006 Adopted
- 6/23/10 Rec. #24 break down the savings by chiller type and size. Conduct additional research for future program years to calibrate claimed savings for Hawaii customer base.- Adopted

Major Changes:

• Chiller efficiency selected at 15% improvement over IECC 2006.

Description: The replacement of chillers with Energy Efficiency above the code efficiency values in place at the time of permitting the project. In multiple unit chiller plants, a review of operational chillers will be conducted to determine what fraction of installed chillers will be incentivized. This is to avoid paying for standby units.

		IECC 2006 IPLV (kW/Ton)	Hawaii Energy Premium Efficiency (kW/Ton)
Reciprocating	All	0.70	0.60
	< 150 tons	0.68	0.58
Rotary Screw and Scroll	150-300 tons	0.63	0.54
	> 300 tons	0.57	Premium Efficiency (kW/Ton) 0 0.60 3 0.58 3 0.54 7 0.48 7 0.57 0 0.51
	< 150 tons	0.67	0.57
Centrifugal	150-300 tons	0.60	0.51
	> 300 tons	0.55	0.47

High Efficiency Chiller - 15% higher than IECC 2006

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings:

High Efficiency Chiller - 15% higher than IECC 2006 - Energy Reduction (kWh/Ton)

Building Type	Recipricating	Rotar	y Screw or S	Scroll	Centrifugal			
	All	<150	150-300	>300	<150	150-300	>300	
All Commercial	312.5	303.6	281.2	254.4	299.1	267.8	245.5	
Misc. Commercial	312.5	303.6	281.2	254.4	299.1	267.8	245.5	
Cold Storage	536.7	521.3	483.0	437.0	513.7	460.0	421.7	
Education	307.9	299.1	277.1	250.7	294.7	263.9	241.9	
Grocery	536.7	521.3	483.0	437.0	513.7	460.0	421.7	
Health	435.7	423.3	392.1	354.8	417.0	373.5	342.3	
Hotel/Motel	312.4	303.5	281.2	254.4 299.0 267	267.8	245.5		
Misc. Industrial	435.7	423.3	392.1	354.8	417.0	373.5	342.3	
Office	520.1	505.3	468.1	423.5	497.8	445.8	408.7	
Restaurant	349.0	339.0	314.1	284.2	334.1	299.2	274.2	
Retail	273.9	266.1	246.5	223.1	262.2	234.8	215.2	
Warehouse	536.7	521.3	483.0	437.0	513.7	460.0	421.7	

Demand Savings:

High Efficiency Chiller - 15% higher than IECC 2006 - Demand Reduction (kW/Ton)

Building Type	Recipricating	Rotar	y Screw or S	Scroll	Centrifugal			
	All	<150	150-300	>300	<150	150-300	>300	
All Commercial	0.064	0.062	0.058	0.052	0.061	0.055	0.050	
Misc. Commercial	0.064	0.062	0.058	0.052	0.061	0.055	0.050	
Cold Storage	0.072	0.070	0.065	0.059	0.069	0.062	0.057	
Education	0.084	0.082	0.076	0.068	0.080	0.072	0.066	
Grocery	0.056	0.054	0.050	0.045	0.053	0.048	0.044	
Health	0.071	0.069	0.064	64 0.058 0.	0.068	0.061	0.056	
Hotel/Motel	0.055	0.053	0.049	0.044	0.052		0.043	
Misc. Industrial	0.064	0.062	0.058	0.052	0.061		0.050	
Office	0.048	0.047	0.043	0.039	0.046	0.041	0.038	
Restaurant	0.056	0.054	0.050	0.045	0.053	0.048	0.044	
Retail	0.069	0.067	0.062	0.056	0.066	0.059	0.054	
Warehouse	0.063	0.061	0.057	0.051	0.060	0.054	0.050	

Measure Life

20 years (DEER)

Incentive \$0.25/kWh

U Hawaii Energy

Program Year 4 July 1, 2012 to June 30, 2013

12.2.2VFD – Chilled Water/Condenser Water

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Energy and Peak Demand Impact Evaluation Report of the 2005-2007
- Demand Management Programs KEMA (KEMA 2005-07).
- Econorthwest TRM Review 6/23/10
- IECC 2006

TRM Review Actions:

- 6/23/10 Rec. #25 Breakdown the savings by building types. Conduct additional research for future program years to calibrate claimed savings for Hawaii customer base – Adopted
- 10/5/11 Currently Under Review.

Major Changes:

• Energy savings separated into building type breakdown.

Description: The installation of variable frequency drives on chilled and/or condenser water pumps used in HVAC systems.

Qualification

- Require pre-notification before projects begin.
- The program reserves the right to perform on-site verifications, both pre- and post-installation.
- Existing equipment must not have a VFD. (i.e. incentives are not available for replacement)
- The VFDs must actively control and vary the pump speed.

Energy and Demand Savings

Energy Savings = 902.7 kWh per HP Demand Savings = 0.245 kW per HP

Program Year 4 July 1, 2012 to June 30, 2013

HVAC Pump Motor VFD

DSMIS Values for All Commercial kW = 0.245 per HP kWh = 902.7 per HP

KEMA 2008 Values for All Commercial (HECO): kW = none available kWh = none available

Base Pump Motor Use:

Base HP =	10 HP	Example
Motor Efficiency =	92%	Estimated Typical
Average Load =	75%	Estimated Typical
HP to kW conversion =	0.746	
kW load = HP*0.746*% Load/eff =	6.1 kW	
Hours of operation =	6000 hours	Estimated
kWh Used Annually = kW load * Hours =	36,489	
Pump Motor Savings with VFD:		
	24.749/	
Energy Savings percentage =	24.74%	Needed to meet the kWh savings from DSMIS
kWh savings = % savings * kWh annual use =	9,027 kWh	
	5,027	
kW average savings = kWh savings/Hours =	1.50 kW	
kW savings = average kW savings * CF =	2.45 kW	Based on DSMIS value of 245 watts per HP
CF needed = kW savings (program) / kW average =	1.63	

Incentive \$80/HP

Measure Life = 15 years (DEER)

Program Year 4 July 1, 2012 to June 30, 2013

12.2.3 VFD – AHU

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Energy and Peak Demand Impact Evaluation Report of the 2005-2007
- Demand Management Programs KEMA (KEMA 2005-07).
- Econorthwest TRM Review 6/23/10
- IECC 2006
- Evergreen TRM Review 2/23/12

TRM Review Actions:

- 6/23/10 Rec. #25 Breakdown the savings by building types. Conduct additional research for future program years to calibrate claimed savings for Hawaii customer base – Adopted
- 10/5/11 Currently Under Review.

Major Changes:

- Energy savings separated into building type breakdown.
- Updated energy and demand savings based on EM&V review.

Description: The installation of variable frequency drives on fans used in HVAC systems.

Values for this measure are not called out in the KEMA report. The DSMIS values for this measure are 200 watts and 760.9 kWh per horsepower. The primary assumption used for the savings calculation is that the percentage savings of the energy used before the VFD is applied. This percent savings is shown in the calculations below as about 21%. Based on information from the EPRI Adjustable Speed Drive directory and comparing energy use for outlet damper, inlet damper and VFD controls the average savings for this profile would be 50% for replacement of an outlet damper and 33% for replacement of an inlet damper. See table below.

Percentag	e of Full Loa	Power Sav	ings %		
	Outlet	Inlet		Outlet	Inlet
% Flow	Dampers	Dampers	VFD	Savings	Savings
100	111	109	105	6	4
90	107	93	73	34	20
80	104	82	57	47	25
70	99	75	44	55	31
60	94	69	32	62	37
50	87	65	21	66	44
40	80	63	14	66	49
30	72	60	8	64	52
			Average	50	33

Therefore, the 21% of base case savings used in to match the DSMIS values in the calculations below appears to be reasonable and possibly conservative. The actually savings for the customer will depend on many factors related to their type of building, system and hours of operation.

Program Year 4 July 1, 2012 to June 30, 2013

Building Type	Hours	Demand Savings (kW/HP)	Energy Savings (kWh/HP)
All Commercial	3,720	0.20	471.69
Misc. Commercial	3,720	0.20	471.69
Cold Storage	6,389	0.20	810.12
Education	3,665	0.20	464.72
Grocery	6,389	0.20	810.12
Health	5,187	0.20	657.71
Hotel/Motel	3,719	0.20	471.57
Misc. Industrial	5,187	0.20	657.71
Office	6,192	0.20	785.14
Restaurant	4,155	0.20	526.85
Retail	3,261	0.20	413.49
Warehouse	6,389	0.20	810.12

VFD AHU – Energy and Demand Savings:

Example Calculation:

HVAC Fan Motor VFD

DSMIS Values for All Commercial kW = 0.200 per HP kWh = 760.9 per HP

KEMA 2008 Values for All Commercial (HECO): kW = none available kWh = none available

Base Pump Motor Use:

Base HP =	10 HP	Example
Motor Efficiency =	92%	Estimated Typical
Average Load =	75%	Estimated Typical
HP to kW conversion =	0.746	
kW load = HP*0.746*% Load/eff =	6.1 kW	
Hours of operation =	3,720 hours	Estimated
kWh Used Annually = kW load * Hours =	22,623	22623.26
Pump Motor Savings with VFD:		
Energy Savings percentage =	20.85%	Needed to meet the kWh savings from DSMIS
kWh savings = % savings * kWh annual use =	4,717 kWh	
kW average savings = kWh savings/Hours =	1.268 kW	
kW savings = average kW savings * CF =	2.0 kW	Based on DSMIS value of 200 watts per HP
CF needed = kW savings (program) / kW average =	1.58	

Program Year 4 July 1, 2012 to June 30, 2013

12.2.4 Garage Demand Ventilation Control

Version Date & Revision History Draft date: October 3, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- ASHRAE Standard 62
- International Mechanical Code
- Department of Health (DOH) Title 11 Chapter 39 (Air Conditioning and Ventilation)

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

- New program offering.
- 11/22/11 Under *Description*, the phrase "City Codes" was changed to "Codes" for accuracy.
- 85% cap of incentive was removed May 2013

Description:

Demand-controlled ventilation (DCV) using carbon monoxide (CO) sensing is a combination of two technologies: Sensors that monitor CO levels in the parking garage, and an air-handling system that uses data from the sensors to regulate the amount of ventilation air admitted. CO sensors continually monitor the air in a parking garage. Given a predictable activity level, automobiles will exhaust CO at a predictable level. Thus CO production in the parking garage will closely track activity. Given these two characteristics, a CO measurement can be used to measure and control the amount of outside air that is being introduced to dilute the CO generated by automobiles. The result is that ventilation rates can be measured and controlled to a specific cfm/ft2. This is in contrast to the traditional method of ventilating at a fixed rate regardless of occupancy.

City codes for enclosed parking areas require ventilation during all hours of operation to protect against an unhealthful build-up of carbon monoxide (CO). As a result, exhaust fans generally run 100% of operating hours. Although some buildings use timers to cut fan run time, it is important to note that the use of timers may not meet code compliance and health considerations. To achieve major energy savings and meet all health requirements, carbon monoxide sensors have now been authorized by code and mandated in some jurisdictions for new construction. Sensors measure CO levels, activating fans only when necessary to maintain CO at an acceptable level, saving upwards to 90% of energy cost.

Program Requirements:

- 1. Pre-notification before equipment is purchased and installed.
- 2. New construction is not eligible.
- 3. Incentive amount not to exceed Installed Cost.
- 4. Failure of devices causes the exhaust fans to operate in the ON position

Energy and Demand Savings:

All assumptions, data and formulas used in the calculations must be clearly documented. Standard engineering principles must be applied, and all references cited. Pre and post monitoring will be conducted to determine measured energy and demand savings.

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms

Gross energy and demand savings estimates for custom projects are calculated using engineering analysis and project-specific details including pre and post monitoring. A physical fan motor audit will be performed as well as spot amperage checks and logging of pre and post operational times.

Baseline Efficiency

The baseline efficiency case assumes compliance with the efficiency requirements as mandated by the Hawaii State Energy Code or industry accepted standard practice.

High Efficiency

The high efficiency case is the installation of a parking garage ventilation demand control device utilizing carbon monoxide sensors.

Persistance Factor

PF = 1 since all custom projects require verification of equipment installation.

Incentives

- \$0.14/kWh
- Incentives is limited to 85% of incremental costs.
- Installations are subject to inspection for up to 5 years. Removal will be cause for incentive forfeiture.

Measure Life

8 years

Program Year 4 July 1, 2012 to June 30, 2013

Example

									100%	1.0%						
								8,	760 hr/yr.	88 hr/yr.						
Zone	New Fan Tag	Fan Location	Old Fan Tag	HP	Measured						6/7 to 6/15		Notes			
1	GEF-1	1-B	PEF-2	10.0	7.2				63,072	631	100.0%		Data logger installed	7.5	0.3	96.5%
	GSF-1	1-B	PSF-4	5.0	3.4				29,784	298				3.7	0.3	91.2%
	GSF-2	1-B	PSF-4	5.0	3.4				29,784	298				3.7	0.3	91.2%
2	GEF-3	2-B	PEF-2	10.0	7.7				67,452	675				7.5	(0.2)	103.2%
	GSF-3	2-B	PSF-4	10.0	7.5				65,700	657	100.0%		Data logger installed	7.5	(0.0)	100.5%
3	GEF-6	3-B	PEF-2	10.0	7.4				64,824	648	99.9%		Data logger installed	7.5	0.1	99.2%
	GSF-4	3-B	PSF-2	10.0	7.4				64,824	648	100.0%		Data logger installed	7.5	0.1	99.2%
4	GEF-9	4-B	PEF-1	7.5	4.5				39,420	394	100.0%		Data logger installed	5.6	1.1	80.4%
	GEF-10	4-B	PEF-4	3.0	2.6				22,776	228				2.2	(0.4)	116.2%
5	GEF-7	4-A	PEF-1	7.5	4.5				39,420	394				5.6	1.1	80.4%
5	GSF-5	4-A	PSF-3	7.5	5.8			-	50,808	508	100.0%		Data logger installed	5.6	(0.2)	103.7%
6	GEF-11	5-A	PEF-1	7.5	4.9			-	42,924	429	100.070		Soco togger motolieu	5.6	0.7	87.6%
U	GSF-6	5-A	PSF-3	7.5	4.9			-	50,808	508	100.0%		Data logger installed	5.6	(0.2)	103.7%
7	GEF-13	5-A 6-A	PSF-5 PEF-2	10.0	7.5			-	65,700	657	100.0%		Data logger filstalleu	7.5	(0.2)	105.7%
/	GSF-15	6-A	PEF-2 PSF-3	7.5	5.0			-	43,800	438	100.0%		Data logger installed	5.6	0.6	89.4%
8	GEF-2	1-B	PSF-5 PEF-1	7.5	3.6	-		-	45,800	315	100.0%		Data logger installeu	5.6	2.0	64.3%
ō		1-B 2-A	PEF-1 PEF-2	10.0	3.0 7.4			-	,	648				7.5	2.0	
	GEF-4 GEF-5				7.4			-	64,824						0.1	99.2%
		3-A	PEF-3	5.0				-	27,156	272				3.7		83.1%
	GEF-8	4-A	PEF-3	5.0	3.1			_	27,156	272				3.7	0.6	83.1%
	GEF-12	5-A	PEF-1	7.5	4.9	-		_	42,924	429	99.9%		Data logger installed	5.6	0.7	87.6%
	GEF-14	6-A	PEF-4	3.0	2.4	-			21,024	210				2.2	(0.2)	107.2%
TOTALS				156.0	109.1		Pre-Proje	_	955,716	9,557				116.4	7.3	
			Coinciden		1.0		Post-Proje	-	(9,557)							
		On P	eak Deman	d Savings	109.1	kW	Energy Savings per Yea	r	946,159	kWh						
								-								
					109.1				946,159	kWh/yr.						
		D	emand Cos	t per Unit	\$ 12.60	/kW month	Energy Cost per Un	t \$	0.21	/kWh						
		[emand Cos	st Savings	\$ 1,375	/month	Energy Cost Saving	s\$	200,586	/yr.						
					12	2 months						Incentive	\$ 0.18			
					\$ 16,496	/Year										
							Demand Cost Saving	s \$	16,496							
							Energy Cost Saving		200,586							
								_	217,082	/yr.						
							Project Co	t Ś	152,323							
								Ċ	,							
							ncentive not to exceed 100% of project co		170,308.6							
							Incentive		152,323.0							

Hawaii Energy

Program Year 4 July 1, 2012 to June 30, 2013

12.2.5 Package Unit AC

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Econorthwest TRM Review 6/23/10
- Econorthwest Email Correspondence 1/23/12
- IECC 2006, pg. 34

TRM Review Actions:

- 6/23/10 Rec. #21 Utilize IECC 2006 Efficiencies as the Baseline Efficiency and Efficient Packaged Unit 15% better than IECC 2006 – Adopted
- 6/23/10 Rec. #22 Break down packaged AC savings based on equipment size. Adopted
- 10/5/11 Currently Under Review.

Major Changes:

- Package chiller unit AC efficiency selected at 15% improvement over IECC 2006.
- 12/12/11 kW/ton and EER values updated to match IECC 2006 package unit values as per Econorthwest's direction, high efficiency numbers adjusted accordingly. Energy & demand savings updated accordingly.

Description: The replacement of package and split unit air conditioners with Energy Efficiency above the Hawaii Model Energy Code.

Unit Size	IECC 2006 Efficiency		Hawaii Energy Premium Efficiency	
(Btu/Hr.)	(kW/ton)	SEER/EER	(kW/ton)	SEER/EER
< 65,000	1.364	9.7 SEER	1.159	11.2 SEER
65,000 to 134,999	1.165	10.3 EER	0.990	11.8 EER
135,000 to 239,999	1.237	9.7 EER	1.052	11.2 EER
240,000 to 759,999	1.263	9.5 EER	1.074	10.9 EER
> 760,000	1.304	9.2 EER	1.109	10.6 EER

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings

Package Unit AC - 15% higher than IECC 2006 - Energy Reduction - kWh

Building Type	< 65,000	65,001 to 135,000	135,001 to 240,000	240,001 to 760,000	> 760,000
All Commercial	608.7	520.1	552.2	563.9	582.3
Misc. Commercial	608.7	520.1	552.2	563.9	582.3
Cold Storage	1,045.4	893.2	948.5	968.4	1,000.0
Education	599.7	512.4	544.1	555.5	573.7
Grocery	1,045.4	893.2	948.5	968.4	1,000.0
Health	848.8	725.2	770.0	786.2	811.9
Hotel/Motel	608.5	519.9	552.1	563.7	582.1
Misc. Industrial	848.8	725.2	770.0	786.2	811.9
Office	1,013.2	865.7	919.2	938.6	969.2
Restaurant	679.9	580.9	616.8	629.8	650.3
Retail	533.6	455.9	484.1	494.3	510.4
Warehouse	1,045.4	893.2	948.5	968.4	1,000.0

Demand Savings

Package Unit AC - 15% higher than IECC 2006 - Demand Reduction - <u>kW</u>

Building Type	< 65,000	65,001 to 135,000	135,001 to 240,000	240,001 to 760,000	> 760,000
All Commercial	0.102	0.087	0.093	0.095	0.098
Misc. Commercial	0.061	0.052	0.056	0.057	0.059
Cold Storage	0.102	0.087	0.093	0.095	0.098
Education	0.041	0.035	0.037	0.038	0.039
Grocery	0.174	0.149	0.158	0.161	0.166
Health	0.133	0.114	0.121	0.123	0.127
Hotel/Motel	0.123	0.105	0.111	0.114	0.117
Misc. Industrial	0.102	0.087	0.093	0.095	0.098
Office	0.102	0.087	0.093	0.095	0.098
Restaurant	0.153	0.131	0.139	0.142	0.147
Retail	0.123	0.105	0.111	0.114	0.117
Warehouse	0.092	0.079	0.084	0.085	0.088

Measure Life = 15 years Incentive = \$200/ton

Program Year 4 July 1, 2012 to June 30, 2013

12.2.6 Inverter Variable Refrigerant Flow (VRF) Split Air Conditioning Systems

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• Evergreen TRM Review – 2/23/12

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• Original TRM values was divided by .8 but should have been multiplied by 1.2 in order to obtain a 20% increase in efficiency.

Description: Inverter driven variable refrigerant flow (VRF) air conditioning systems are direct expansion AC systems that utilize variable speed evaporator/condenser fans, and a combination of fixed and variable speed compressors along with most often multiple individual zone evaporators to provide the ability to more closely match the AC system's output with the building's cooling requirements.

Savings comes from:

- Part Load Efficiencies: Increased part-load efficiency operation
- High Efficiency Motors: Many systems use ECM motors
- *Higher Room Temperatures*: The capacity matching allows for better humidity control through longer
- cooling operation.
- Reduction of Distribution Losses: Duct losses are reduced with DX systems. This may be offset by

dedicated outside air distribution systems when needed.

Payback Qualifications: VRF products need a payback requirement of 1 year or greater. The TRB/TRC must be greater than 1.

Energy and Demand Savings: VRF systems have demonstrated a 20-30% reduction in energy consumption as compared to standard DX equipment. The energy savings and demand tables that follow provide the savings by building type and system size for VRF systems. These figures are conservatively determined to be 20% greater than provided by the "Standard" Package Unit AC measures that require EERs 15% greater than IECC 2006 requirements.

The VRF applications have been new construction projects with no ability to perform pre and post measurements. Hawaii Energy will perform field pre and post field measurements to determine the measure effectiveness in the local environment

Program Year 4 July 1, 2012 to June 30, 2013

Savings for retrofit and new construction

Variable Refrigerant Flow AC

20% better than Non-VRF with efficiencies 15% over IECC 2006 - Energy Reduction

Building Type	< 65,000	65,001 to 135,000	135,001 to 240,000	240,001 to 760,000	> 760,000
All Commercial	494.5	636.5	676.7	676.7	698.8
Misc. Commercial	494.5	636.5	676.7	676.7	698.8
Cold Storage	849.2	1,093.1	1,162.1	1,162.1	1,200.0
Education	487.2	627.0	666.6	666.6	688.4
Grocery	849.2	1,093.1	1,162.1	1,162.1	1,200.0
Health	689.5	887.4	943.4	943.4	974.3
Hotel/Motel	494.4	636.2	676.4	676.4	698.5
Misc. Industrial	689.5	887.4	943.4	943.4	974.3
Office	823.1	1,059.4	1,126.3	1,126.3	1,163.0
Restaurant	552.2	710.9	755.8	755.8	780.4
Retail	433.4	557.9	593.2	593.2	612.5
Warehouse	849.2	1,138.6	1,162.1	1,162.1	1,200.0

Variable Refrigerant Flow AC

Same as Non-VRF with efficiencies 15% over IECC 2006 - Demand Reduction

Building Type	< 65,000	65,001 to 135,000	135,001 to 240,000	240,001 to 760,000	> 760,000
All Commercial	0.069	0.089	0.095	0.095	0.098
Misc. Commercial	0.042	0.053	0.057	0.057	0.059
Cold Storage	0.069	0.089	0.095	0.095	0.098
Education	0.028	0.036	0.038	0.038	0.039
Grocery	0.118	0.151	0.161	0.161	0.166
Health	0.090	0.116	0.123	0.123	0.127
Hotel/Motel	0.083	0.107	0.114	0.114	0.117
Misc. Industrial	0.069	0.089	0.095	0.095	0.098
Office	0.069	0.089	0.095	0.095	0.098
Restaurant	0.104	0.134	0.142	0.142	0.147
Retail	0.083	0.107	0.114	0.114	0.117
Warehouse	0.062	0.080	0.085	0.085	0.088

Incentive

= \$250/ton (new construction)

= \$300/ton (retrofit)

Program Year 4 July 1, 2012 to June 30, 2013

12.3 High Efficiency Water Heating

12.3.1 Commercial Solar Water Heating

Version Date & Revision History Draft date: May 30, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

n/a

TRM Review Actions:

• 10/5/11 - Currently Under Review.

Major Changes:

• n/a

Measure Description:

Replacement of a Standard Electric Resistance Water Heater (SERWH) or heat pump with a Solar Water Heater. Solar equipment must comply with Solar Rating and Certification Corporation (SRCC) standards.

Baseline Efficiencies:

Baseline usage is a 0.9 COP Electric Resistance Water Heater or heat pump with a COP of 3.5.

The baseline water heater energy consumption is by a single 4.0 kW electric resistance element that is controlled thermostatically on/off controller based of tank finish temperature set point. The tank standby loss differences between baseline and high efficiency case are assumed to be negligible.

The baseline water heater energy consumption by a heat pump is 6.0 kW.

Energy Savings

Base Case	Annual Energy Savings (kWh/year) (per 5,000 BTU capacity derated)	Demand Savings (kW)
Standard Electric Resistance Water Heater (COP = 0.9)	429	0.46
Heat Pump (COP 3.5)	32	0.75

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithm (Standard Electric Water Heater) – BASE CASE

Commercial Solar Water Heating - Standard Electric	Water Heater (SERWH) - BASE CASE	
Energy per Day (BTU) Needed in Tank	5,000 BTU/Day	
Energy per Day (BTU) Needed in Tank	5,000 BTU/Day	
BTU to kWh Energy Conversion	÷ 3,412 kWh / BTU	
Energy per Day (kWh)	1.5 kWh / Day	
Days per Month	x 30.4 Days per Month	
Energy (kWh) per Month	45 kWh / Month	
Days per Year	x 365 Days per Year	
Energy (kWh) Needed in Tank to Heat Water per Year	535 kWh/Year ÷ 0.90 COP	
Elec. Res. Water Heater Efficiency Base SERWH Energy Usage per Year at the Meter		
Base SERVIT Energy Usage per real at the Meter	594 kWh / Year	
Design Annual Solar Fraction	90% Water Heated by Solar System	Program Design
	10% Water Heated by Remaining Backup Element	1.08.000 200.80
Energy Usage per Year at the Meter	594 kWh/Year	
	x 10% Water Heated by Remaining Backup Element	
Back Up Element Energy Used at Meter	59 kWh / Year	
Circulation Pump Energy	0.082 kW	KEMA 2008
Pump Hours of Operation	x 1,292 Hours per Year	KEMA 2008
Pump Energy used per Year	106 kWh/Year	
Back Up Element Energy Used at Meter	59 kWh / Year	36%
Pump Energy used per Year	<u>+ 106</u> kWh / Year	64%
Design Solar System Energy Usage	165 kWh/Year	
Design Solar System Energy Usage	165 kWh / Year	
Performance Factor	0.94 pf	HE
Persistance Factor	<u>x 0.93</u> pf	KEMA 2008
Residential Solar Water Heater Energy Savings	145 kWh/Year	KEMA 2008
Base SERWH Energy Usage per Year at the Meter	594 kWh / Year	
Design Solar System Energy Usage	<u>- 165</u> kWh / Year	
	429 kWh / Year	
Energy Savings	429 kWh/year (Per 5,000 BTU panel installed derated)	
SERWH Element Power Consumption	4.0 kW	
Coincidence Factor	x 0.143 cf	8.6 Minutes per h
SERWH On Peak Demand	0.57 kW On Peak	KEMA 2008
Solar System Metered on Peak Demand	0.11 kW On Peak	KEMA 2008
Commercial Solar Water Heating Demand Savings	0.46 kW Savings	

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithm (Heat Pump) – BASE CASE

Commercial Solar Water Heating - Heat Pump - BA	SE CAS	SE		
Energy per Day (BTU) Needed in Tank	5,0	,000	BTU/Day	
Energy per Day (BTU) Needed in Tank	5,0	,000	BTU/Day	
BTU to kWh Energy Conversion	÷ 3,4	,412	kWh / BTU	
Energy per Day (kWh)		1.5	kWh / Day	
Days per Month	<u>x 3</u>	30.4	Days per Month	
Energy (kWh) per Month		45	kWh / Month	
Days per Year	<u>x</u>	365	Days per Year	
Energy (kWh) Needed in Tank to Heat Water per Year	ļ	535	kWh / Year	
Heat Pump Efficiency	÷ 3	3.50	COP	
Base Heat Pump Energy Usage per Year at the Meter		153	kWh / Year	
Design Annual Solar Fraction			Water Heated by Solar System Water Heated by Remaining Backup Element (Heat Pump)	Program Design
Energy Usage per Year at the Meter	:	153	kWh / Year	
	x	10%	Water Heated by Remaining Backup Element (Heat Pump)	
Back Up Element Energy Used at Meter		15	kWh / Year	
Circulation Pump Energy	0.	0.082	kW	KEMA 2008
Pump Hours of Operation	x 1,2	,292	Hours per Year	KEMA 2008
Pump Energy used per Year		106	kWh / Year	
Back Up Element Energy Used at Meter		15	kWh / Year	13%
Pump Energy used per Year	+ :	106	kWh / Year	87%
Design Solar System Energy Usage	:	121	kWh / Year	
Design Solar System Energy Usage		121	kWh / Year	
Performance Factor	0	0.94	pf	HE
Persistance Factor	x 0	0.93	pf	KEMA 2008
Residential Solar Water Heater Energy Savings	:	106	kWh/ Year	KEMA 2008
Base Heat Pump Energy Usage per Year at the Meter		153	kWh / Year	
Design Solar System Energy Usage	- :	121	kWh / Year	
		32	kWh / Year	
Energy Savings		32	kWh/year (Per 5,000 BTU panel installed derated)]
SERWH Element Power Consumption		4.0	kW	
Coincidence Factor	<u>x 0.1</u>	.143	cf	8.6 Minutes per ho
SERWH On Peak Demand	0	0.57	kW On Peak	KEMA 2008
Solar System Metered on Peak Demand	0	0.11	kW On Peak	KEMA 2008
Commercial Solar Water Heating Demand Savings	s 0	0.46	kW Savings	

Incentive

\$50 per 5,000 BTU panel output after derated based on orientation and tilt factor.

Measure Life

15 years

Program Year 4 July 1, 2012 to June 30, 2013

12.3.2 Heat Pump

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• Evergreen TRM Review – 2/23/12

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• Adjust the assumptions so the description and calculations are consistent.

Measure Description

This measure relates to the installation of a heat pump water heater (HPWH) in place of a standard electric water heater. HPWHs can be added to existing domestic hot water (DHW) systems to improve the overall efficiency. HPWHs utilize refrigerants (like an air source heat pump) and have much higher coefficients of performance (COP) than standard electric water heaters. HPWHs remove waste heat from surrounding air sources and preheat the DHW supply system. HPWHs come in a variety of sizes and the size of HPWH will depend on the desired temperature output and amount of hot water needed by application. The savings from water heater heat pumps will depend on the design, size (capacity), water heating requirements, building application and climate. This measure could relate to either a retrofit or a new installation.

Definition of Efficient Equipment

In order for this characterization to apply, the efficient equipment is assumed to be a heat pump water heater with or without an auxiliary water heating system.

Definition of Baseline Equipment

In order for this characterization to apply, the baseline equipment is assumed to be a standard electric storage tank type water heater with a thermal efficiency of 98%. This measure does not apply to natural gas-fired water heaters.

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 10 years

Deemed Measure Cost

Due to the complexity of heat pump water heater systems, incremental capital costs should be determined on a case by- case basis. High capacity heat pump water heaters will typically have a supplemental heating source such as an electric resistance heater. For new construction applications, the incremental capital cost for this measure should be calculated as the difference in installed cost of the entire heat pump water heater system including any auxiliary heating systems and a standard electric storage tank water heater of comparable capacity. For retrofit applications, the total installed cost of heat pump water heater should be used.

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithm				
Heat Pump Water Heater				
Energy per Day (BTU) = (Gallons per Day) x (lbs. per G				
Hot Water needed per Person			Gallons per Day per Person	
Average Occupants			Persons	KEMA 2008
Household Hot Water Usage		50.1	Gallons per Day	
Mass of Water Conversion		8.34	l lbs/gal	
Finish Temperature of Water		130) deg. F Finish Temp	
Initial Temperature of Water	-	75	6 deg. F Initial Temp	
Temperature Rise		55	deg. F Temperature Rise	
Energy to Paico Water Temp		1.0		
Energy to Raise Water Temp Energy per Day (BTU) Needed in Tank) BTU / deg. F / lbs. BTU/Ton	_
			-, -	
Energy per Day (BTU) Needed in Tank		12,000	BTU/Ton	
3TU to kWh Energy Conversion	÷	3,412	kWh / BTU	
Energy per Day (kWh)		3.5	kWh /Ton	
Days per Month	х	30.4	Days per Month	
Energy (kWh) per Month		107	kWh / Month	
Days per Year	х	365	Days per Year	
Energy (kWh) Needed in Tank to Heat Water per Year		1,283	kWh /Ton	
lec. Res. Water Heater Efficiency	÷	0.98	COP	
Base SERWH Energy Usage per Year at the Meter		1,309	 kWh /Ton	KEMA 2008 - HECO
Energy (kWh) Needed to Heat Water per Year Heat Pump Water Heating Efficiency Heat Pump Water Heating Energy Usage	÷	3.50	kWh /Ton _COP kWh /Ton	
Base SERWH Energy Usage per Year at the Meter		1 200	kWh /Ton	
Heat Pump Water Heating Energy Usage	_		kWh/Ton	
Commercial Heat Pump Water Heating Savings			kWh/Ton	
				_
Hours per Day		10		
Hours per Year		3,650		
Heat Pump Power Consumption		0.3		
Coincedence Factor	х	0.08	cf	4.80 Minutes per h
		0.02	kW On Peak	
Base SERWH Element Power Consumption		0.4	kW	
Coincidence Factor	х	0.143		8.6 Minutes per ho
Base SERWH On Peak Demand			kW On Peak	KEMA 2008
		0.05		
Base SERWH On Peak Demand	-	0.05	kW On Peak	
Heat Pump Water Heater Demand		0.02	kW On Peak	KEMA 2008
		0.03	kW On Peak	
				-
Commercial Solar Water Heater Demand Savings		0.03	kW Savings per Ton	

Program Year 4 July 1, 2012 to June 30, 2013

12.4 High Efficiency Water Pumping

12.4.1 VFD Domestic Water Booster Packages

Version Date & Revision History Draft date: May 23, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- The increased incentive was based on previous paid booster pump installations and measured energy/demand savings. Previous Incentive Level = \$0.06/kWh. New Incentive Levels = \$0.08/kWh
- The energy and demand impacts are based on HECO's evaluation from past projects and monitoring.

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

- <u>Effective 7/1/10 through 3/6/11</u> Previous Incentive = \$1,600 + [(Existing System hp – New System hp) x \$65]
- <u>Effective 3/7/11 through 6/30/11</u> New Incentive = \$3,000 + [(Existing System hp – New System hp) x \$80]

Description: Pump improvements can be done to optimize the design and control of water pumping systems. The measurement of energy and demand savings for commercial and industrial applications will vary with the type of pumping technology, operating hours, efficiency and current and proposed controls. Depending on the specific application, slowing the pump, trimming or replacing the impeller, or replacing the pump may be suitable options for improving pumping efficiency.

Base Efficiency

The baseline equipment is assumed to be a non-optimized existing pumping system.

High Efficiency

In order for this characterization to apply, the efficient equipment is assumed to be an optimized pumping system meeting applicable program efficiency requirements. The proposed Booster Pump System must be a more efficient design than the existing system. (i.e. Installed with VFD.). All pump motors must meet NEMA Premium Efficiency standards.

Qualification

- Booster Pump applications require pre-notification before equipment is purchased and installed.
- The new Booster Pump System's total horsepower must be equal to or less than that of the existing system.
- The system horsepower reduction must be between 0 to 129 hp. For projects with greater than 129hp, please contact the program
- Booster Pump applications do not apply to New Constructions.

Program Year 4 July 1, 2012 to June 30, 2013

Energy and Demand Savings:

Demand Savings = 2.62 + (HP Reduction) x 0.115 Energy Savings = 25,500 + (HP Reduction) x 989

	No HP Reduction	W/HP Reduction	HP Reduction Multiplier
Demand Savings (kW/HP)	2.620	2.735	0.115
Energy Savings (kWh/HP-year)	25,500	26,489	989

Savings Algorithm:

No HP duction		V/HP duction	HP Reduction Multiplier
2.620		2.735	0.115
25,500		26,489	989
\$,		1,600	
Red \$	Reduction 2.620 25,500 \$ 1,600	Reduction Red 2.620 2 25,500 3 \$ 1,600 \$	Reduction Reduction 2.620 2.735 25,500 26,489

Base HP Reduction \$ 65.00 3,000 \$ 3,000 \$ New Incentive Cost/kWh \$ 0.12 \$ 0.11 Proposed HP Reduction \$ 80.00

Demand Savings = 2.62 + (HP Reduction) x 0.115

Energy Savings = 25,500 + (HP Reduction) x 989

Example	Existing System	New System
Small Building	7.5 HP	3 HP
12 Floors (83 Units)		3 HP
	15 HP	6 HP
Cost	\$ 31,000	

Cost

Savings S	ummary							
	HP Reduction			kW	k	Wh		
	9			3.77		34,401		
							-	
	Previous Rebate		HP	Reduction	Total		\$/kWh	
\$		1,600	\$	585	\$	2,185	\$	0.064
		7%	Incr	emental Co	st			
	New Rebate		HP	Reduction	Total		\$/kWh	
\$		3,000	\$	720	\$	3,720	\$	0.108
		12%	Incr	emental Co	st			

Incentives:

Incentive = [(Existing System hp – New System hp) x \$80] + \$3000

Based on $\ensuremath{\mathsf{HECO}}\xspace's evaluation from past projects and monitoring$

Program Year 4 July 1, 2012 to June 30, 2013

12.4.2 VFD Pool Pump Packages

Version Date & Revision History Draft date: February 24, 2010 Effective date: July 1, 2012

End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• 12/15/11 – Updated algorithm average pump size from 1.5 HP pump to 1 HP pump. Updated baseline and high efficiency calculations accordingly.

Measure Description

A variable speed commercial pool pump motor in place of a standard single speed motor of equivalent horsepower.

Definition of Efficient Equipment

The high efficiency equipment is a variable speed commercial pool pump.

Definition of Baseline Equipment

The baseline efficiency equipment is assumed to be a single speed commercial pool pump.

 Δ kWh = (kWBASE ×Hours) × 55%

Where:

Unit	= 2-speed or variable speed pool pump
ΔkWh	= Average annual kWh reduction
Hours	= Average annual operating hours of pump
kWBASE	= connected kW of baseline pump
55%	= average percent energy reduction from switch to 2-speed or variable speed pump (1)

Baseline Efficiency

The baseline efficiency case is a single speed pump.

High Efficiency

The high efficiency case is a 2-speed or variable speed pump.

Energy and Demand Savings

Demand Savings:	0.093 kW / HP
Energy Savings:	1123 kWh per year / HP

(1) Davis Energy Group (2008). Proposal Information Template for Residential Pool Pump Measure Revisions. Prepared for Pacific Gas and Electric Company; Page 2.

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithm	
Commercial Pool Pump	
Average Pool Pump Horesepower	1 HP
Efficiency	0.8
Hours of operation per day	6 hours
Number of days pool in use	365 days per year
1 HP Equals	0.746 kW
Based Demand	0.93 kW
Base Energy Usage per day	5.60 kWh/day
Base Energy Usage per year	2042 kWh/year
Demand Reduction	10%
High Efficiency Demand	0.84 kW
Energy Savings	55%
High Efficiency Energy Usage	919 kWh/year

Energy Savings per year	1123 kWh/year
Demand Savings	0.093 kW

Deemed Lifetime of Efficient Equipment

The estimated useful life for a variable speed pool pump is 10 years.

Deemed Measure Cost

The incremental cost is estimated to be \$350 for a two speed motor and \$1,500 for a variable speed motor

Incremental Cost

\$161 per motor. – (from: 2001 DEER Update Study, CCIG-CRE-02, p. 4-84, Xenergy, Oakland, CA.

Incentives

\$225/HP

Program Year 4 July 1, 2012 to June 30, 2013

12.5 High Efficiency Motors

12.5.1 CEE Listed Premium Efficiency Motors

Version Date & Revision History Draft date: March 2, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 - Currently Under Review.

Major Changes:

• 11/22/11 – Removed the following sentence from *Measure Description*: "Therefore, this measure should be suspended at that time."

Measure Description

This measure relates to the installation of premium efficiency three phase Open Drip Proof (ODP) and Totally Enclosed Fan-Cooled (TEFC) motors less than or equal to 450 HP, meeting minimum qualifying efficiency for the following HVAC applications: supply fans, return fans, exhaust fans, chilled water pumps, and boiler feed water pumps. On December 9, 2010, new federal efficiency standards will take effect requiring motors in this size category to meet National Electric Manufacturers Association (NEMA) premium efficiency levels.

Baseline

2007 EISA nominal efficiency (as defined in NEMA MG1 Table 12-12) motors.

Demand	0.746 kW
Base Efficiency	80%
Base Demand	0.933 kW
Base Energy	1531.6 kWh/year

High Efficient Condition

The CEE Motors List includes motors that are 1-200 hp NEMA Design A/B, 460 volts, TEFC or ODP and 1200rpm, 1800 rpm, or 3600 rpm. To be eligible to be included, a motor's nominal efficiency must be at least one full NEMA band higher than the 2007 EISA nominal efficiency (as defined in NEMA MG1 Table 12-12) and the motor and corresponding nominal efficiency must be listed in a publicly available document, such as product catalog or cut sheet amounting to an advertised claim of performance, or the reporting entity must wish it to be treated as publicly available (and expressly claim to achieve performance based upon the noted test procedure).

Demand	0.746 kW
High Efficiency	82.50%
High Efficiency Demand	0.904 kW
High Efficiency Energy	1485.2 kWh/year

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings Based on per HP

Demand Savings	0.0283 kW
Energy Savings	46.4 kWh/year

Savings Algorithm

Where:

HP	= Motor Horse Power = Actual installed
ηBASE ηEE	 Efficiency of baseline motor. Based on EPACT 92 for installed HP Efficiency of premium efficiency motor
' IF	= Actual installed = Load factor of motor = 0.75
HOURS	= Annual motor run hours

1 Hours of Operation Hours of Operation Load Factor	6 p	equals per day per year	0.746 kW
Demand Base Efficiency Base Demand Base Energy	0.746 k 80% 0.933 k 1531.6 k		
Demand High Efficiency High Efficiency Demand High Efficiency Energy	0.746 k 82.50% 0.904 k 1485.2 k		
Demand Savings	0.0283 k	kW	

Demand Savings0.0283 kWEnergy Savings46.4 kWh/year

Program Year 4 July 1, 2012 to June 30, 2013

MOTOR INCENTIVES REFERENCE TABLE							
Motor Size	3600	RPM	1800	RPM	1200 RPM		Incentive Per
(hp)	ODP	TEFC	ODP	TEFC	ODP	TEFC	Motor
1	77.0	77.0	85.5	85.5	82.5	82.5	\$15
1.5	84.0	84.0	86.5	86.5	86.5	87.5	\$23
2	85.5	85.5	86.5	86.5	87.5	88.5	\$30
3	85.5	86.5	89.5	89.5	88.5	89.5	\$45
5	86.5	88.5	89.5	89.5	89.5	89.5	\$50
7.5	88.5	89.5	91.0	91.7	90.2	91.0	\$75
10	89.5	90.2	91.7	91.7	91.7	91.0	\$100
15	90.2	91.0	93.0	92.4	91.7	91.7	\$120
20	91.0	91.0	93.0	93.0	92.4	91.7	\$160
25	91.7	91.7	93.6	93.6	93.0	93.0	\$200
30	91.7	91.7	94.1	93.6	93.6	93.0	\$210
40	92.4	92.4	94.1	94.1	94.1	94.1	\$240
50	93.0	93.0	94.5	94.5	94.1	94.1	\$300
60	93.6	93.6	95.0	95.0	94.5	94.5	\$360
75	93.6	93.6	95.0	95.4	94.5	94.5	\$450
100	93.6	94.1	95.4	95.4	95.0	95.0	\$600
125	94.1	95.0	95.4	95.4	95.0	95.0	\$750
150	94.1	95.0	95.8	95.8	95.4	95.8	\$900
200	95.0	94.4	95.8	96.2	95.4	95.8	\$1,200
250	95.0	95.8	95.8	96.2	95.4	95.8	\$1,500
300	95.4	95.8	95.8	96.2	95.4	95.8	\$1,800
350	95.4	95.8	95.8	96.2	95.4	95.8	\$2,100
400	95.8	95.8	95.8	96.2	95.8	95.8	\$2,400
450	95.8	95.8	96.2	96.2	96.2	95.8	\$2,700

Measure Life

15 years

Incremental Cost

1 to 5HP (\$35.20 per HP) 7.5 to 20HP (\$17.30 per HP) 25 to 100HP (\$10.28 per HP) 125 to 250HP (\$5.95 per HP)

Program Year 4 July 1, 2012 to June 30, 2013

12.5.2 ECM Evaporator Fan Motors for Walk-in Coolers and Freezers

Version Date & Revision History Draft date: Effective date: July 1, 2013 End date: June 30, 2014

Referenced Documents:

2007 Arkansas Deemed Savings Quick Start Programs
 <u>http://www.aepefficiency.com/oklahoma/ci/downloads/Deemed_Savings_Report.pdf</u>

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

An electronically commutated motor (ECM) is a fractional horsepower direct current (DC) motor used most often in commercial refrigeration applications such as display cases, walk-in coolers/freezers, refrigerated vending machines, and bottle coolers. ECMs generally replace shaded pole (SP) motors and offer at least 50% energy savings. Analysis efforts summarized in this report focused on the most prevalent use of ECMs – refrigeration, where motor sizes are typically listed in watts (10-140 W).

Measure/Technology Review

Five of the primary data sources reviewed for this effort contained data for ECMs in refrigeration and HVAC applications. The NPCC study gave savings estimates for upgrading a CAV box single speed motor to an ECM. The other four studies gave wide ranging savings and cost data for compressor, condenser, and evaporator fan motors. KW Engineering completed a study for PacifiCorp in October of 2005 regarding the market for ECMs in walk-in refrigerators (kW Engineering, 2005). This study included the market share in each state for refrigeration ECMs as well as cost and energy savings data. These values for energy and demand savings are given in Table 1 below.

Measure Information Available	Resource	Application	Annual Energy Savings ¹ (kWh/unit)	Demand Savings ¹ (KW/unit)
Yes	Ecotope 2003	Small Evaporator Fan ECM	200	-
Yes	PG&E 2003	Evaporator Fan	673	0.077
Yes	Stellar Processes 2006	Small Evaporator Fan ECM	200	-
No	Xcel Energy 2006			
No	Quantec 2005			
No	DEER			
No	KEMA 2006			
Yes	CEE	Evaporator Fan – Freezer Condenser Fan – Freezer Compressor Fan – Freezer Evaporator Fan – Refrigerator Condenser Fan – Refrigerator Compressor Fan - Freezer	115 141 985 294 141 690	0.013 0.016 0.112 0.034 0.016 0.079
No	Energy Star			
No	RTF			
Yes	NPCC 2005	CAV Box	517	0.397
Yes	kW Engineering 2005	Evaporator Fan	734	0.084

Table 1

Program Year 4 July 1, 2012 to June 30, 2013

Baseline Efficiencies:

The standard motor type for this application is a shaded pole (SP) motor. Table 2 contains the baseline annual energy consumption and demand for ECM equivalent SP motors.

Table 2 (Baseline Efficiency)

Measure	Annual Energy Consumption	Demand
Shaded Pole (SP) motor	18 kWh/W	0.002 kW/W

Minimum Requirements/High Efficiency

Any ECM up to 1 hp in size will meet the minimum requirements for both retrofit and new construction installations. Table 3 contains the estimated annual energy consumption, demand, and cost for the ECM application.

Table 3 (High Efficiency)

Measure	Annual Energy Consumption	Demand
ECM	8.7 kWh/W	0.001 kW/W

Energy Savings:

Annual Energy	Demand	
Savings	Savings	
9.3 kWh/W	0.001 kW/W	

Savings Algorithms

Deemed demand and energy savings should be calculated by the following formulas for Refrigeration applications:

kW savings = Rated Wattage x (kW/Wpre - kW/Wpost)

kWh savings = Rated Wattage x (kWh/Wpre – kWh/Wpost)

Program Year 4 July 1, 2012 to June 30, 2013

Where:

Rated Wattage	=	Rated Wattage of the electronically commutated motor
kW /W pre	=	Demand of the existing electronically commutated motor. If unavailable, demand listed in Table 2 should be used
kW /W post	=	Demand of the new electronically commutated motor. If unavailable, demand listed in Table 3 should be used
kWh /W pre	=	Annual energy consumption of the existing electronically commutated motor. If unavailable, annual energy consumption listed in Table 2 should be used
kWh /W post	=	Annual energy consumption of the new electronically commutated motor. If unavailable, annual energy consumption listed in Table 3 should be used

Lifetime

DEER - 15 years

Measure Costs and Incentive Levels

\$85 per motor and controller set

Program Year 4 July 1, 2012 to June 30, 2013

12.5.3 EC Motors – Fan Coil Units

Measure ID:

Version Date & Revision History Draft date: Effective date: July 1, 2013 End date: June 30, 2014

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

Electronically commutated motors provide clear advantages over AC or conventional DC motors in terms of service life, controllability, flexibility, and cost-effectiveness.

For the past 30 years, forward-bladed centrifugal fans in fan coil-units have been driven by AC motors, which are typically around 45% efficient. However, the latest electronically commutated (EC) motors are 80% efficient, leading to significant operational benefits. The term EC is applied to a DC motor having electronic commutation achieved with a microprocessor.

Commutation means applying a current to the motor phases to produce the best torque at the motor's shaft. In brush-type motors, commutation is done electromechanically using graphite brushes and a commutator. In brushless motors, however, it is achieved by switching electronics using rotor-position information obtained by sensors. Thus, the EC motor is essentially a DC motor that can be connected direct to an AC mains supply.

Baseline Efficiencies: BASE CASE Base demand 4 pole (1800 rpm) 107 watts High Efficiency: ENHANCED CASE High efficiency DC/EC demand 54 watts

Program Year 4 July 1, 2012 to June 30, 2013

The major advantage of EC motors over their AC counterparts is far higher efficiency, which enables a fan-coil unit to achieve a specific fan power (SFP) of 0.3 compared with 0.8 for an AC motor (the limit in the latest Building Regulations is 0.8 W/l/s).

This higher efficiency can be maintained at low speeds, so less motor heat is absorbed by the cold air discharged from the FCU, which in turn leads to more cooling applied in the space. Lower temperatures increase motor life, and in-built soft starting gives longer bearing life.

Speed control is simple, and results in impressive energy saving performance. The maximum cooling load on an FCU may only apply for 500 hour out of a total annual running time of 3,000 hour. With a typical fan coil unit, the fans deliver more air than necessary for 2500 hour/year — a shocking waste of energy.

By using the temperature controller on an FCU to reduce the speed of the EC motor during periods of reduced cooling demand, we can cut energy wastage dramatically. For example, an annual fan energy consumption of 620 kWh can be reduced to 140 kWh using speed control.

The reduction of air volume is, however, limited by considerations of the room air distribution. That is why we recommend that tests are undertaken in a suitable test facility to determine the optimum range of air volume.

Energy Savings:

ENERGY SAVINGS		
Energy savings 4 pole	232	kWh/year
PEAK DEMAND SAVINGS (5PM-9F	PM)	
Coincidence factor	0.5	
Peak demand savings (4 pole)	0.0265	kW

Electronically commutated motors offer six major benefits when used in fan-coil units.

- High efficiency of 85%, leading to lower input power.
- Lower rise in air temperature on the air stream.
- Efficient speed control.
- Longer motor life resulting from lower running temperatures.
- Longer bearing life because of the soft-start feature.
- Suitable for a 230 V supply.

By considering a typical 2 fan, fan coil unit providing 190l/s of air against an external resistance of 30Pa, from the testing undertaken by Caice the following figures were derived:

• 4 pole AC Motor Fan Unit powered by 2 off fans energy consumed = 107 watts, sfp 0.55 = w/l/s

• DC/EC Motor Fan Unit powered by 2 off fans energy consumed = 54 watts, sfp = 0.28 w/l/s.

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms

BASE CASE				
Base demand 4 pole (1800 rpm)	107	watts		
ENHANCED CASE				
High efficiency DC/EC demand	54	watts		
DEMAND SAVINGS				
Demand savings 4 pole	53	watts		
hours of operation	12	hours/day		
hours of operation	4380	hours/year		
ENERGY SAVINGS				
Energy savings 4 pole	232	kWh/year		
PEAK DEMAND SAVINGS (5PM-9PM)				
Coincidence factor	0.5			
Peak demand savings (4 pole)	0.0265	kW		

Operating Hours

4,380 hours/year (12 hours/day)

Demand Coincidence Factor 0.5

- -

Lifetime

15 years

Measure Costs and Incentive Levels \$55/unit

Program Year 4 July 1, 2012 to June 30, 2013

12.6 Commercial Industrial Processes

12.6.1 Waste Water Process Improvements

Version Date & Revision History Draft date: Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

Wastewater facilities are 24/7 facilities that have specific technical requirements, high capital costs and long procurement process. This targeted program will target the two highest energy consumers in the plants, air systems & UV lighting through process improvements. A list of private waste water facilities will be leveraged in targeting opportunities.

Baseline Efficiencies: TBD

High Efficiency: TBD

Energy Savings:

The methodology for energy savings will be based on a customized approach.

Incentives

This measure will be in the \$0.50/kWh range.

Program Year 4 July 1, 2012 to June 30, 2013

12.6.2 Air Compressor Technologies and Operations

Version Date & Revision History Draft date: Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

This program is to encourage the newer VFD rotary and screw air compressor systems that provide 25% to 30% savings. The program will be vendor driven to provide them direct incentives and the support of Hawaii Energy technology papers and sales call assistance.

Baseline Efficiencies:

No action

High Efficiency: Corrective measure

Energy Savings:

The methodology would be based on a customized approach with industry studies with energy savings associated to leakage correction.

Incentives

This measure will be in the \$0.25/kWh range.

Program Year 4 July 1, 2012 to June 30, 2013

12.6.3 Demand Control Kitchen Ventilation (DCKV)

Version Date & Revision History Draft date: Effective date: July 1, 2013 End date: June 30, 2014

Referenced Documents:

 Detailed Energy Savings Report, Melink Corporation, http://www.melinkcorp.com/Intellihood/Energy_Analysis.pdf

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

Kitchen ventilation with DCKV hood exhaust. Demand ventilation uses temperature and/or smoke sensing to adjust ventilation rates. This saves energy comparing with the traditional 100% on/off kitchen ventilation system.

Baseline Efficiencies:

Kitchen ventilation without DCKV. Usage per HP:

Basecase = (HP x .746 KW/HP x Hours per Year)/efficiency	
Basecase fan motor usage per HP (kWh/year)	4827
Basecase fan motor demand (kW)	0.83

High Efficiency:

Usage per HP:

Enhanced case fan motor usage per HP (kWh/year)	2194
Enhanced case fan motor demand (kW)	0.38

Energy Savings:

The demand control kitchen ventilation savings were determined using the method described in the Melink Detailed Energy Savings Report.

Energy Savings from fan motor per HP (kWh/year)	2633
Demand Savings from fan motor per HP (kW)	0.45

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms

% Rated RPM	% Run Time	Time HRS/YR	Output KW/HP	System Efficiency	Input KW/HP	KWH/HP/YR
Н	-	J=GXI	К	L	M=K/L	N=JXM
100	5%	291.2	0.746	0.9	0.829	241
90	20%	1164.8	0.544	0.9	0.604	704
80	25%	1456	0.382	0.9	0.424	618
70	25%	1456	0.256	0.9	0.284	414
60	15%	873.6	0.161	0.9	0.179	156
50	10%	582.4	0.093	0.9	0.103	60
40	0%	0	0.048	0.9	0.053	0
30	0%	0	0.02	0.9	0.022	0
20	0%	0	0.015	0.9	0.017	0
10	0%	0	0.01	0.9	0.011	0
Total kWh	Total kWh/HP/YR 2194					2194

Basecase = (HP x .746 KW/HP x Hours per Year)/efficiency

Basecase	fan motor usage per HP (kWh/year)	4827
Basecase	fan motor demand (kW)	0.83

Enhanced case fan motor usage per HP (kWh/year)	2194 0.38
Enhanced case fan motor demand (kW)	0.38

Energy Savings from fan motor per HP (kWh/year)	2633
Demand Savings from fan motor per HP (kW)	0.45

Operating Schedule

16	HR/DAY
7	DAY/WK
52	WK/YR
5824	_

Program Year 4 July 1, 2012 to June 30, 2013

Demand Coincidence Factor TBD

Persistence TBD

Lifetime 15 Years (Hawaii Energy assumption)

Measure Costs and Incentive Levels

Measure Cost: \$1,200 - \$1,700 per HP based on business vertical and site complications (provided my Melink)

Program Year 4 July 1, 2012 to June 30, 2013

12.6.4 Low Flow Spray Nozzles for Food Service (Retrofit)

Measure ID:

Version Date & Revision History Draft date: Effective date: July 1, 2013 End date: June 30, 2014

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

All pre-rinse valves use a spray of water to remove food waste from dishes prior to cleaning in a dishwasher. They reduce water consumption, water heating cost, and waste water (sewer) charges. Prerinse spray valves include a nozzle, squeeze lever, and dish guard bumper. The spray valves usually have a clip to lock the handle in the "on" position. Pre-rinse valves are inexpensive and easily interchangeable with different manufacturers' assemblies.

Baseline Efficiencies:

The baseline equipment is assumed to be a spray valve with a flow rate of 3 gallons per minute.

High Efficiency:

The efficient equipment is assumed to be a pre-rinse spray valve with a flow rate of 1.6 gallons per minute, and with a cleanability performance of 26 seconds per plate or less.

Energy Savings:

 Δ kWh = Δ Water x HOT_% x 8.33 x (Δ T) x (1/EFF) x 10⁻⁶

- Δ Water = Water savings (gallons)
- $HOT_{\%}$ = The percentage of water used by the pre-rinse spray valve that is heated = 69%
- 8.33 = The energy content of heated water (Btu/gallon/°F)
- ΔT = Temperature rise through water heater (°F) = 70°F
- EFF = Water heater thermal efficiency = 0.97
- 10^{-6} = Factor to convert Btu to MMBtu

 Δ Water = (FLO_{base}-FLO_{eff}) x 60 x HRS_{day} x 365

FLO_{base} = The flow rate of the baseline spray nozzle = 3 gallons per minute

- FLO_{eff} = The flow rate of the efficient equipment = 1.6 gallons per minute
- 60 = minutes per hour
- 365 = days per year
- HRS = Hours used per day depends on facility type as below

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms

Base Case Flow	3 Gallons per Minute
Enhanced Case Flow	1.6 Gallons per Minute
Average useage time per day	120 Minutes per Day Average hour estimate based on PG&E savings estimates, algorithms, sources
Reduce Shower	1.4 Gallon per Minute
Water Usage Reduction	168.0 Gallons per Day
Mass of Water Conversion	8.34 lbs/gal
Finish Temperature of Water	140 deg. F Finish Temp
Initial Temperature of Water	- 70 deg. F Initial Temp
Temperature Rise	70 deg. F Temperature Rise
Energy to Raise Water Temp	1.0 BTU / deg. F / lbs.
Energy per Day (BTU) Needed in Tank	98,078 BTU/Day
Energy per Day (BTU) Needed in Tank	98,078 BTU/Day
BTU to kWh Energy Conversion	÷ 3,412 kWh / BTU
Energy per Day (kWh)	28.7 kWh / Day
Days per Month	x 30.4 Days per Month
Energy (kWh) per Month	874 kWh / Month
Days per Year	x 365 Days per Year
Energy (kWh) Needed in Tank to Heat Water per Year	10,486 kWh / Year
Elec. Res. Water Heater Efficiency	÷ 0.97 COP
=	10,811 kWh / Year
Percentage of water used by nozzle that is heated	69%
Annual Energy Savings	7,459 kWh / Year
Coincident Peak Demand Savings	0 kW

Operating Hours

Facility Type	Hours of Pre-Rinse Spray Valve Use per Day (HOURS)			
Full Service Restaurant	4			
Other	2			
Limited Service (Fast Food) Restaurant	1			

Demand Coincidence Factor TBD

Persistence TBD

Lifetime 5 years

Measure Costs and Incentive Levels

The actual measure installation cost should be used (including material and labor).

Program Year 4 July 1, 2012 to June 30, 2013

12.6.5 ENERGY STAR Commercial Kitchen Equipment - Ice Makers

Version Date & Revision History Draft date: Effective date: July 1, 2013 End date: June 30, 2014

Referenced Documents:

• PG&E Work Paper PGECOFST108 Commercial Ice Machines Revision 3 – May 30, 2012

TRM Review Actions:

• Currently Under Review.

Major Changes:

• New measure

Measure Description:

This measure applies to Energy Efficient air-cooled commercial ice makers in retrofit and new construction applications installed in conditioned spaces. Commercial ice makers are classified into three equipment types; ice-making heads (IMHs), remote condensing units (RCUs) and self-contained units (SCUs). The measure described here applies to ice makers that use a batch process to make cubed ice.

The industry standard for energy use and performance of commercial ice machines is AHRI Standard 810. Key parameters reported for ice makers include the Equipment Type, Harvest Rate (lbs of ice/24hrs) and Energy Consumption Rate. The AHRI Directory of Certified Equipment150 lists these values by equipment manufacturer and model number.

Baseline and Efficiency Standard:

The Energy Efficient criteria for ice makers define efficiency requirements for both energy and potable water use.

Market Applicability

Hospitals account for 39.4 percent of all commercial icemaker purchases, followed by hotels (22.3 percent), restaurants (13.8 percent), retail outlets (8.5 percent), schools (8.5 percent), offices (4.3 percent), and grocery stores (3.2 percent).

Measure Savings Calculations:

Annual electric savings can be calculated by determining the energy consumed for baseline ice makers compared against ENERGY STAR performance requirements using the harvest rate of the more efficient unit. Peak demand savings can then be derived from the electric savings.

 $\Delta kWh = (kWh base, per100lb - kWh ee, per100lb)/100 \times DC \times H \times 365$

 $\Delta kW = \Delta kWh / HRS$

Program Year 4 July 1, 2012 to June 30, 2013

Where:

- 100 = conversion factor to convert kWh*base,per100lb* and kWh*ee,per100lb* into maximum kWh consumption per pound of ice.
- DC = Duty Cycle of the ice maker representing the percentage of time the ice machine is making ice
- H = Harvest Rate (lbs of ice made per day)
- 365 = days per year
- kWh = Annual energy savings
- HRS = Annual operating hours
- CF = 1.0

The baseline and energy efficient energy usage per 100lbs of ice produced is dependent on the category of ice maker, as well as the capacity of the energy efficient ice maker. The equations used to determine the energy per 100lbs of ice produced can be seen below.

This incentive applies towards the purchase of new or replacement energy efficient Air-cooled ice machines. Used or rebuilt equipment is not eligible. Customers must provide proof that the appliance meets the energy efficiency specifications listed in Table below.

This specification covers machines generating 60 grams (2 oz.) or lighter ice cubes, as well as flaked, crushed, or fragmented ice machines that meet the Energy Efficiency thresholds by Ice harvest (IHR) rate listed below. Only air cooled machines (icemaker heads, self-contained unites, and remote condensing units) are eligible for incentives. Performance data is based on ARI Standard 810.

	Ice Harvest	Energy Effficient	ce Makers	Federal Minimum Standard Energy Consumption Rate		
Equipment Type	Rate Range (lbs of ice/24 hrs)	Energy Consumption Rate (kWh/100 lbs ice) (H = Harvest Rate)	Potable Water Use Limit (gal/100 lbs ice)	(kWh/100 lbs ice) (H = Harvest Rate)		
Ico Making Hoads	<450	<u>< 8.72</u> - 0.0073H	<u><</u> 20	10.26 - 0.0086H		
Ice Making Heads	<u>></u> 450	<u><</u> 5.86 - 0.0009H	<u><</u> 20	6.89 - 0.0011H		
Remote	< 1,000	<u><</u> 7.52 - 0.0032H	<u><</u> 20	8.85 - 0.0038H		
Condensing Units	<u>></u> 1,000	<u><</u> 4.34	<u><</u> 20	5.10		
Remote	< 934	<u><</u> 7.52 - 0.0032H	<u><</u> 20	8.85 - 0.0038H		
Condensing Units	<u>></u> 934	<u><</u> 4.51	<u><</u> 20	5.30		
Self-Contained Units	< 175	<u><</u> 15.3 - 0.0399H	<u><</u> 30	18.0 - 0.069H		
Sen-contained Units	<u>></u> 175	<u><</u> 8.33	<u><</u> 30	9.80		

Energy Efficiency Requirements

Program Year 4 July 1, 2012 to June 30, 2013

Example Savings Calculations

Performance	IHR	IHR	IHR	IHR	IHR
lce Harvest Rate (IHR) (lbs per 24 hrs.)	101-300	301-500	501-1,000	1,001- 1,500	> 1,500
Average IHR Used in Energy Calculations (lbs/day)	200	400	750	1,250	1,750
Baseline Model Energy Usage (kWh/100 lbs)	9.8	6.82	6.07	5.1	5.1
Energy Efficient Model Energy Usage (kWh/100 lbs)	8.33	5.8	5.19	4.34	4.34
Baseline Model Daily Energy Consumption (kWh)	14.7	20.5	34.1	47.8	66.9
Energy Efficient Model Daily Energy Consumption (kWh)	12.5	17.4	29.2	40.7	57
Baseline Model Average Demand (kW)	0.613	0.853	1.421	1.992	2.789
Energy Efficient Model Average Demand (kW)	0.521	0.725	1.215	1.695	2.373
Estimated Demand Reduction (kW)	0.092	0.128	0.206	0.297	0.416
Baseline Model Annual Energy Consumption (kWh/yr)	5,366	7,468	12,452	17,452	24,432
Energy Efficient Model Annual Energy Consumption (kWh/yr)	4,561	6,351	10,645	14,851	20,791
Estimated Annual Energy Savings (kWh/yr)	805	1,117	1,807	2,601	3,641
Electric Cost (\$/kWh)	\$0.25	\$0.25	\$0.25	\$0.25	\$0.25
Baseline Model Annual Energy Cost (\$/yr)	\$1,342	\$1,867	\$3,113	\$4,363	\$6,108
Energy Efficient Model Annual Energy Cost (\$/yr)	\$1,140	\$1,588	\$2,661	\$3,713	\$5,198
Estimated Annual Energy Cost Savings (\$/yr)	\$201	\$279	\$452	\$650	\$910
Estimated Incremental Cost	\$306	\$266	\$249	\$589	\$939
Estimated Useful Life (EUL)	12	12	12	12	12

Savings calculation for varying Harvest Rates (H) can be seen below:

Demand Coincidence Factor

CF = 1.0

Lifetime 12 years

Incentive Levels

Program Year 4 July 1, 2012 to June 30, 2013

12.6.6 ENERGY STAR Commercial Kitchen Equipment - Electric Steam Cooker

Version Date & Revision History Draft date: Effective date: July 1, 2013 End date: June 30, 2014

Referenced Documents:

- ENERGY STAR Commercial Kitchen Equipment Savings Calculator: Steam Cooker Calcs.
- PG&E Work Paper PGECOFST104 Commercial Steam Cooker Revision #4 (5/22/12)

TRM Review Actions:

• Currently Under Review.

Major Changes:

New measure

Measure Description:

The installation of a qualified ENERGY STAR commercial steam cooker. ENERGY STAR steam cookers save energy during cooling and idle times due to improved cooking efficiency and idle energy rates.

Baseline Efficiencies:

The Baseline Efficiency case is a conventional electric steam cooker with a cooking energy efficiency of 30%, pan production of 23.3 pounds per hour, and an idle energy rate of 1.2 kW.

High Efficiency:

The High Efficiency case is an ENERGY STAR electric steam cooker with a cooking energy efficiency of 50%, pan production capacity of 16.7 pounds per hour, and an idle energy rate of 0.4 kW.

Energy Savings:

Unit savings are deemed based on study results:

∆kWh/year	= 3,258 kWh/pan
ΔkW	= 2.23 kW

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithms

Steam Cooker Calculations for the ENERGY STAR Commercial Kitchen Equipment Calculato

Inputs

	USER ENTRY	
	Electric	
Average daily operation	12	hours
Annual days of operation	365	days
Food cooked per day	100	pounds
Number of pans per unit	3	
Incremental cost	\$2,000	

Assumptions

	Elec	etric	
	Conventional	ENERGY STAR	
Туре	steam generator	boilerless	
Water Use	40	3	gallons/hour
Time in constant steam mode	40%	40%	
Cooking energy efficiency	30%	50%	
Production capacity per pan	23.3	16.7	pounds/hour
Number of preheats per day	1	1	
Preheat length	15	15	minutes
Preheat energy rate	6,000	6,000	W
Idle energy rate	1,200	400	W
ASTM energy to food	30).8	Wh/pound
Equipment lifetime	1	2	years

Calculations

	Electric		
	Conventional	ENERGY STAR	
Annual operation	4,3	80	hours
Daily preheat energy	1,500	1,500	Wh
Daily cooking energy	10,267	6,160	Wh
Daily idle time	10.32	9.75	hour
Daily idle energy	37,052	14,382	Wh
Total daily energy	48,819	22,042	Wh

Annual energy consumption per steam cooker

	Conventional	ENERGY STAR	Savings (3 Pan)	Savings per Pan
Electric Usage (kWh/year)	17,819	8,045	9,774	3258

Operating Hours

The average steam cooker is assumed to operate 4,380 hours per year.

Demand Coincidence Factor

CF = 1.0

Persistence 100% persistence factor

Lifetime

12 years

Measure Costs and Incentive Levels

Incremental cost = \$2,000, Incentive Level = \$750/steamer

Program Year 4 July 1, 2012 to June 30, 2013

12.6.7 ENERGY STAR Commercial Kitchen Equipment - Griddle

Version Date & Revision History Draft date: Effective date: July 1, 2013 End date: June 30, 2014

Referenced Documents:

- The industry standard for energy use and cooking performance of griddles are ASTM F1275-03: Standard Test
- Method for the Performance of Griddles and ASTM F1605-01: Standard Test Method for the Performance of Double-Sided Griddles
- ENERGY STAR Commercial Griddles Program Requirements Version 1.1, effective May 2009 for gas griddles and effective January 1, 2011 for electric.
- Database for Energy Efficient Resources, 2008, http://www.deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls
- Assumptions based on PG&E Commercial Griddles Work Paper developed by FSTC, May 22, 2012.

TRM Review Actions:

• Currently Under Review.

Major Changes:

• New measure

Measure Description:

This measure applies to ENERGY STAR or equivalent electric commercial griddles in retrofit and new construction applications. This appliance is designed for cooking food in oil or its own juices by direct contact with either a flat, smooth, hot surface or a hot channeled cooking surface where plate temperature is thermostatically controlled.

Energy-efficient commercial electric griddles reduce energy consumption primarily through the application of advanced controls and improved temperature uniformity.

Baseline and Efficiency Standard

Key parameters for defining griddle efficiency are Heavy Load Cooking Energy Efficiency and Idle Energy Rate. There are currently no federal minimum standards for Commercial Griddles, however, the American Society of Testing and Materials (ASTM) publishes Test Methods155 that allow uniform procedures to be applied to each commercial cooking appliance for a fair comparison of performance results.

ENERGY STAR efficiency requirements apply to single and double sided griddles. The ENERGY STAR criteria should be reviewed on an annual basis to reflect the latest requirements.

Program Year 4 July 1, 2012 to June 30, 2013

ENERGY STAR Criteria for Electric Single and Double Sided Griddles

Performance Parameters	Electric Griddles
Heavy-Load Cooking Energy Efficiency	>= 70%
Idle Energy Rate	<= 320 watts per ft ²

Energy Savings:

Annual savings can be calculated by determining the energy consumed by a standard efficiency griddle as compared with an ENERGY STAR rated griddle.

∆kWh	= kWh(base) – kWh(eff)
$\Delta kWh(base or eff)$	= kWh(cooking) + kWh(idle) + kWh(preheat)
kWh(cooking)	= [LB(food) x E(food)/Cook(eff)] x Days
kWh(idle)	= IdleEnergy x [DailyHrs – LB(food)/Capacity – PreheatTime/60] x Days
kWh(preheat)	= PreheatEnergy x Days

Parameter	Description	Value	Source
Daily Hrs	Daily Operating Hours	12 hours	FSTC
Preheat Time	Time to Preheat (min)	15 min	FSTC
E(food)	ASTM defined Energy to Food	0.139 kWh/lb	FSTC
Days	Number of days of operation	365 days	FSTC
CookEff	Cooking energy efficiency (%)		FSTC,
IdleEnergy	Idle energy rate (kW)		ENERGY STAR
Capacity	Production capacity (lbs/hr)	See Table below	FSTC
Preheat Energy	kWh/day		FSTC
LB(food)	Food cooked per day (lb/day)		FSTC

General assumptions used for deriving deemed electric savings are values taken from the Food Service Technology Center (FSTC) work papers. These deemed values assume that the griddles are 3 x 2 feet in size. Parameters in the table are per linear foot, with an assumed depth of 2 feet.

Baseline and Efficient Assumptions for Electric Griddles

Parameter	Baseline Electric Griddles	Efficient Electric Griddles
Preheat Energy (kWh/ft)	1.33	0.67
Idle Energy Rate (kW/ft)	0.80	0.64
Cooking Energy Efficiency (%)	65%	70%
Production Capacity (lbs/h/ft)	11.7	16.33
Lbs of food cooked/day/ft	33.33	33.33

Program Year 4 July 1, 2012 to June 30, 2013

Base (kWh/year) per linear foot	
Cooking	2602
Idle	2599
Preheat	485
Total Base Energy Usage (kWh)	5686
Demand (kW)	1.30

Efficient (kWh/year) per linear foot	
Cooking	2416
Idle	2268
Preheat	245
Total Efficient Energy Usage (kWh)	4928
Demand (kW)	1.13

Energy Savings (kWh/year) per linear foot	758
Demand Savings (kW)	0.17

Operating Hours

The average steam cooker is assumed to operate 4,380 hours per year.

Demand Coincidence Factor

Coincidence factor is 1.0 because the cooking equipment is assumed to operate throughout the on-peak demand periods (5PM – 9PM).

Persistence

100% persistence factor

Lifetime

12 years - DEER (2008)

Measure Costs and Incentive Levels

Incremental cost = \$774 (Assumptions based on PG&E Commercial Griddles Work Paper developed by FSTC, May 22, 2012).

Program Year 4 July 1, 2012 to June 30, 2013

12.6.8 ENERGY STAR Commercial Kitchen Equipment - Fryer

Version Date & Revision History Draft date: Effective date: July 1, 2013 End date: June 30, 2014

Referenced Documents:

- The industry standards for energy use and cooking performance of fryers are ASTM Standard Test Method for the Performance of Open Deep Fat Fryers (F1361) and ASTM Standard Test Method for the Performance of Large Vat Fryers (FF2144).
- ENERGY STAR Version 2.0, effective April 22, 2011
- Assumptions based on PG&E Commercial Fryers Work Paper developed by FSTC, June 13, 2012

TRM Review Actions:

• Currently Under Review.

Major Changes:

• New measure

Measure Description:

This measure applies to ENERGY STAR or its equivalent electric commercial open-deep fat fryers in retrofit and new construction applications. Commercial fryers consist of a reservoir of cooking oil that allows food to be fully submerged without touching the bottom of the vessel. Electric fryers use a heating element immersed in the cooking oil. High efficiency standard and large vat fryers offer shorter cook times and higher production rates through the use of heat exchanger design. Standby losses are reduced in more efficient models through the use of fry pot insulation.

Baseline and Efficiency Standard

Key parameters for defining fryer efficiency are Heavy Load Cooking Energy Efficiency and Idle Energy Rate. ENERGY STAR requirements apply to a standard fryer and a large vat fryer. A standard fryer measures 14 to 18 inches wide with a vat capacity from 25 to 60 pounds. A large vat fryer measures 18 inches to 24 inches wide with a vat capacity greater than 50 pounds. The ENERGY STAR criteria should be reviewed on an annual basis to reflect the latest requirements.

There are currently no federal minimum standards for Commercial Fryers, however, the American Society of Testing and Materials (ASTM) publishes Test Methods183 that allow uniform procedures to be applied to each commercial cooking appliance for a fair comparison of performance results.

ENERGY STAR Criteria and FSTC Baseline for Open Deep-Fat Electric Fryers

Performance Parameters	ENERGY STAR Electric Fryer Criteria		
renormance rarameters	Standard Fryers	Large Vat Fryers	
Heavy-Load Cooking Energy Efficiency	>= 80%	>= 80%	
Idle Energy Rate	<+ 1.0 kW	<= 1.1 kW	

Program Year 4 July 1, 2012 to June 30, 2013

Annual savings can be calculated by determining the energy consumed by a standard efficiency fryer as compared with an ENERGY STAR rated fryer.

∆kWh	= kWh(base) – kWh(eff)
$\Delta kWh(base or eff)$	= kWh(cooking) + kWh(idle) + kWh(preheat)
kWh(cooking)	= [LB(food) x E(food)/Cook(eff)] x Days
kWh(idle)	= IdleEnergy x [DailyHrs – LB(food)/Capacity – PreheatTime/60] x Days
kWh(preheat)	= PreheatEnergy x Days

Parameter	Description	Value	Source
Daily Hrs	Daily Operating Hours	12 hours	FSTC
Preheat Time	Time to Preheat (min)	15 min	FSTC
E(food)	ASTM defined Energy to Food	0.167 kWh/lb	FSTC
Days	Number of days of operation	365 days	FSTC
CookEff	Cooking energy efficiency (%)		FSTC,
IdleEnergy	Idle energy rate (kW)		ENERGY STAR
Capacity	Production capacity (lbs/hr)	See Table below	FSTC
Preheat Energy	kWh/day		FSTC
LB(food)	Food cooked per day (lb/day)		FSTC

General assumptions used for deriving deemed electric savings are values taken from the Food Service Technology Center (FSTC) work papers.

Baseline and Efficient Assumptions for Electric Standard and Large Vat Fryers

Parameter	Baseline Electric Fryers		Efficient Electric Fryers	
i alameter	Standard	Large Vat	Standard	Large Vat
Preheat Energy (kWh/ft)	2.3	2.5	1.7	2.1
Idle Energy Rate (kW/ft)	1.05	1.35	1.00	1.1
Cooking Energy Efficiency (%)	75%	70%	80%	80%
Production Capacity (lbs/h/ft)	65	100	70	110
Lbs of food cooked/day/ft	150	150	150	150

Program Year 4 July 1, 2012 to June 30, 2013

Baseline Electric Fryers	Standard	Large Vat
Cooking	12191	13062
Idle	3619	5051
Preheat	840	913
Total Energy Usage (kWh/year) per Vat	16649	19025
Demand	3.80	4.34

Efficient Electric Fryers	Standard	Large Vat
Cooking	11429	11429
Idle	3507	4170
Preheat	621	767
Total Energy Usage (kWh/year) per Vat	15556	16366
Demand	3.55	3.74

Savings	Standard	Large Vat
Energy Savings (kWh/year) per Vat	1093	2659
Demand Savings (kW)	0.25	0.61

Operating Hours

The average steam cooker is assumed to operate 4,380 hours per year.

Demand Coincidence Factor

Coincidence factor is 1.0 because the cooking equipment is assumed to operate throughout the on-peak demand periods (5PM – 9PM).

Persistence

100% persistence factor

Lifetime

12 years - DEER (2008)

Measure Costs and Incentive Levels

Incremental cost = \$769 (Assumptions based on PG&E Commercial Fryers Work Paper developed by FSTC, May 22, 2012).

Program Year 4 July 1, 2012 to June 30, 2013

12.6.9 ENERGY STAR Commercial Kitchen Equipment - Hot Food Holding Cabinet

Version Date & Revision History Draft date: Effective date: July 1, 2013 End date: June 30, 2014

Referenced Documents:

• PG&E Work Paper PGEFST105 (Revision 3) – June 8, 2012

TRM Review Actions:

• Currently Under Review.

Major Changes:

• New measure

Measure Description:

Commercial insulated hot food holding cabinet models that meet program requirements incorporate better insulation, reducing heat loss, and may also offer additional energy saving devices such as magnetic door electric gaskets, auto-door closures, or dutch doors. The insulation of the cabinet also offers better temperature uniformity within the cabinet from top to bottom. This means that qualified hot food holding cabinets are more efficient at maintaining food temperature while using less energy.

- <u>Full-size holding cabinets</u> are defined as any holding cabinet with an internal measured volume of greater than or equal to 15 cubic feet (≥15 ft.3). This measure does not include cook-and-hold equipment. All measures must be electric hot food holding cabinets that are fully insulated and have doors. Qualifying cabinets must not exceed the maximum idle energy rate of 20 Watts per cubic foot in accordance with the ASTM Standard test method.
- <u>Half-size holding cabinets</u> are defined as any holding cabinet with an internal measured volume of less than 15 cubic feet (<15 ft.3). This measure does not include cook-and-hold or retherm equipment. All measures must be electric hot food holding cabinets that are fully insulated and have doors. Qualifying cabinets must not exceed the maximum idle energy rate of 20 Watts per cubic foot in accordance with the ASTM Standard test method.

Baseline Efficiency:

The baseline equipment is assumed to be a standard hot food holding cabinet with an idle energy rate of 40 watts per cubic foot.

High Efficiency:

The efficient equipment is assumed to be an ENERGY STAR qualified hot food holding cabinet with an idle energy rate of 20 watts per cubic foot.

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings:

Energy usage calculations are based on 15 hours a day, 365 days per year operation at a typical temperature setting of 150°F. The different sizes for the holding cabinets (half size and full size) have proportional operating energy rates. Operating energy rate for the full size holding cabinets was obtained in accordance with the ASTM Standard.

The energy savings calculations listed in the following tables use Title 20 (California) as the baseline for potential energy savings requiring all hot food holding cabinets sold in California to meet a normalized idle energy rate of 40 Watts/ft³.

Insulated Hot Food Holding Cabinet - Full Size

Performance	Baseline	High Efficiency Qualifying Model
Demand (kW)	1	0.28
Annual Energy Use (kWh/year)	5475	1533
Estimated Demand Reduction (kW)	-	0.72
Annual Energy Savings (kWh/year)	-	3942
Incremental Measure Cost (\$)		2336
Estimated Useful Life (years)	12	12

Insulated Hot Food Holding Cabinet - Half Size

Performance	Baseline	High Efficiency Qualifying Model
Demand (kW)	0.38	0.05
Annual Energy Use (kWh/year)	2081	274
Estimated Demand Reduction (kW)	-	0.33
Annual Energy Savings (kWh/year)	-	1807
Incremental Measure Cost (\$)		381
Estimated Useful Life (years)	12	12

The demand reduction estimation is based on measured data for standard efficiency insulated holding cabinets and for high-efficiency insulated holding cabinets. The measured data are derived from tests conducted under ASTM Standard Test Method for the Performance of Hot Food Holding Cabinets.

Measure ASTM test results for Hot Food Holding Cabinets

Cabinet Size	Cabinet Volume (ft³)	Normalized Idle Energy Rate (W/ft ³)	Total Cabinet Idle Energy Rate (W)
Full-Size	25	11.3	0.28
Half-Size	10	5.7	0.05

Program Year 4 July 1, 2012 to June 30, 2013

Operating Hours

15 hr/day, 365 day/year = 5,475 hours/year

Demand Coincidence Factor CF = 1.0

Lifetime 12 years

Measure Costs and Incentive Levels

The incremental cost for ENERGY STAR hot food holding cabinet is \$2,336 (full size) & \$381 (half size)

Program Year 4 July 1, 2012 to June 30, 2013

12.6.10 ENERGY STAR Commercial Kitchen Equipment -Combination Ovens

Version Date & Revision History Draft date: Effective date: July 1, 2013 End date: June 30, 2014

Referenced Documents:

- U.S. Department of Energy, Energy Star website: http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COO
- Energy Star Commercial Kitchen Equipment Savings Calculator
- PG&E Work Paper PGEFST105 (Revision 3) June 8, 2012
- Arkansas TRM Version 2.0 Volume 2
- KEMA report titled "Business Programs: Deemed Savings Parameter Development", November 2009 Coincidence factor for food service building type listed as 0.84

TRM Review Actions:

• Currently Under Review.

Major Changes:

• New measure

Measure Description:

Commercial combination ovens offer the ability to steam food in the oven cavity. These oven are capable of steaming, proofing and reheating various food products in addition to the normal functions of baking and roasting. Foods can be cooked in a variety of ways: in a convection oven dry heat only mode, a steam only mode, and a combination of dry heat and steam modes. Food to be cooked partially in one mode at a certain temperature and then finished in another mode and at a separate temperature by utilizing the programmability of combination ovens. Combination ovens range in size from 6 pan countertop models up to 40 pan stand-alone models.

Program Year 4 July 1, 2012 to June 30, 2013

Baseline Efficiency:

Parameter	< 15 Pans	15-28 Pans	> 28 Pans	
Assumptions				
% Time in Steam Mode	50%	50%	50%	
Preheat Energy (kWh/day)	3.0	3.75	5.63	
Convection Idle Energy Rate (kW)	1.5	3.75	5.25	
Steam Idle Energy Rate (kW)	10.0	12.5	18.0	
Convection Cooking Energy Efficiency (%)	65%	65%	65%	
Steam Cooking Energy Efficiency (%)	40%	40%	40%	
Convection Production Capacity (lbs/hour)	80	100	275	
Steam Production Capacity (lbs/hour)	100	150	350	
Lbs of Food Cooked/day	200	250	400	
Total Energy				
Annual Energy Consumption (kWh)	35,263	48,004	74,448	
Demand (kW)	6.8	9.2	14.3	

High Efficiency:

Parameter	< 15 Pans	15-28 Pans	> 28 Pans	
Assumptions				
% Time in Steam Mode	50%	50%	50%	
Preheat Energy (kWh/day)	1.5	2.0	3.0	
Convection Idle Energy Rate (kW)	1.0	2.5	4.0	
Steam Idle Energy Rate (kW)	5.0	6.0	9.0	
Convection Cooking Energy Efficiency (%)	70%	70%	70%	
Steam Cooking Energy Efficiency (%)	50%	50%	50%	
Convection Production Capacity (lbs/hour)	100	152	325	
Steam Production Capacity (lbs/hour)	120	200	400	
Lbs of Food Cooked/day	200	250	400	
Total Energy				
Annual Energy Consumption (kWh)	23,658	32,001	50,692	
Demand (kW)	4.5	6.1	9.7	

Energy Savings

Energy usage calculations are based on 12 hours a day, 365 days per year (4,380 hours/year). The different sizes for the combination ovens (< 15 pans, 15-28 pans, and > 28 pans) have proportional operating energy rates.

Performance	< 15 Pans	15-28 Pans	> 28 Pans
Annual Energy Savings (kWh)	11,604	16,003	23,756
Estimated Demand Reduction (kW)	2.6	3.7	5.4

Program Year 4 July 1, 2012 to June 30, 2013

Operating Hours 12 hr/day, 365 day/year = 4,380 hours/year

Demand Coincidence Factor CF = 0.84

Lifetime 12 years

Measure Costs and Incentive Levels

Program Year 4 July 1, 2012 to June 30, 2013

12.6.11 ENERGY STAR Commercial Kitchen Equipment - Convection Ovens

Version Date & Revision History Draft date: Effective date: July 1, 2013 End date: June 30, 2014

Referenced Documents:

- U.S. Department of Energy, Energy Star website: http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=COO
- Energy Star Commercial Kitchen Equipment Savings Calculator
- PG&E Work Paper PGEFST105 (Revision 3) June 8, 2012
- Arkansas TRM Version 2.0 Volume 2
- KEMA report titled "Business Programs: Deemed Savings Parameter Development", November 2009 Coincidence factor for food service building type listed as 0.84

TRM Review Actions:

• Currently Under Review.

Major Changes:

• New measure

Measure Description:

Commercial convection ovens are widely used in the foodservice industry and have a wide variety of uses from baking and roasting to warming and reheating. Convection ovens are also used for nearly all types of food preparation, including foods typically prepared using other types of appliances (e.g., griddles, fryers, etc.). ENERGY STAR commercial ovens are about 20 percent more energy efficient than standard models.

- <u>Full-size electric convection ovens</u> are defined by the ability to accept a minimum of five (5) standard full-size sheet pans (18 in. x 26 in. x 1 in.). Qualifying ovens must meet Energy Star requirements by having a tested heavy-load (potato) cooking efficiency in accordance with ASTM F1496. Cooking energy efficiency must be greater than or equal to 70 percent (≥70%) and must not exceed the maximum idle energy rate of 1.6 kW (≤ 1.6kW).
- <u>Half-size electric convection ovens</u> are defined by the ability to accept a minimum of five (5) sheet pans measuring (18 in. x 13 in. x 1 in.). Qualifying ovens must meet Energy Star requirements by having a tested heavy-load (potato) cooking efficiency in accordance with ASTM F1496. Cooking energy efficiency must be greater than or equal to 70 percent (≥70%) and must not exceed the maximum idle energy rate of 1.0 kW (≤ 1.0kW).

Program Year 4 July 1, 2012 to June 30, 2013

Baseline Efficiency:

Parameter	Half Size	Full Size
Assumptions		
Preheat Energy (kWh/day)	1.0	1.5
Idle Energy Rate (kW)	1.5	2.0
Cooking Energy Efficiency (%)	65%	65%
Production Capacity (lbs/hour)	45	70
Lbs of food cooked/day	100	100
Energy per pound of food (kWh/lb)	0.0732	0.0732
Total Energy		
Annual Energy Consumption (kWh)	9,692	12,193
Demand (kW)	1.86	2.34

High Efficiency:

Parameter	Half Size	Full Size
Assumptions		
Preheat Energy (kWh/day)	0.9	1.0
Idle Energy Rate (kW)	1.0	1.6
Cooking Energy Efficiency (%)	70%	70%
Production Capacity (lbs/hour)	50	80
Lbs of food cooked/day	100	100
Energy per pound of food (kWh/lb)	0.0732	0.0732
Total Energy		
Annual Energy Consumption (kWh)	7,704	10,314
Demand (kW)	1.48	1.98

Energy Savings

Energy usage calculations are based on 12 hours a day, 365 days per year. The different sizes for the holding cabinets (half size and full size) have proportional operating energy rates.

Performance	Half Size	Full Size
Annual Energy Savings (kWh)	1,988	1,879
Estimated Demand Reduction (kW)	0.38	0.36

Program Year 4 July 1, 2012 to June 30, 2013

Operating Hours 12 hr/day, 365 day/year = 4,380 hours/year

Demand Coincidence Factor CF = 0.84

Lifetime 12 years

Measure Costs and Incentive Levels

Program Year 4 July 1, 2012 to June 30, 2013

12.6.12 ENERGY STAR Commercial Kitchen Equipment - Solid Door Refrigerators & Freezers

Version Date & Revision History Draft date: Effective date: July 1, 2013 End date: June 30, 2014

Referenced Documents:

 Southern California Edison Work Paper SCE13CC001 Commercial Reach-In Refrigerators and Freezers – April 6, 2012

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• New measure

Measure Description:

This measure relates to the installation of a new reach-in commercial refrigerator or freezer meeting ENERGY STAR efficiency standards. ENERGY STAR labeled commercial refrigerators and freezers are more energy efficient because they are designed with components such as ECM evaporator and condenser fan motors, hot gas anti-sweat heaters, or high-efficiency compressors, which will significantly reduce energy consumption. This measure could relate to the replacing of an existing unit at the end of its useful life, or the installation of a new system in a new or existing building.

Baseline Efficiencies:

In order for this characterization to apply, the baseline equipment is assumed to be a solid or glass door refrigerator or freezer meeting the minimum federal manufacturing standards.

High Efficiency:

In order for this characterization to apply, the efficient equipment is assumed to be a solid or glass door refrigerator or freezer meeting the minimum ENERGY STAR efficiency level standards.

Energy Savings:

Annual Energy Savings (kWh/year) = (kWhbase - kWhee) * 365

Demand Savings = Annual Energy Savings / HOURS * CF

Baseline Energy Usage

Туре	kWhbase
Solid Door Refrigerator	0.10 * V + 2.04
Glass Door Refrigerator	0.12 * V + 3.34
Solid Door Freezer	0.40 * V + 1.38
Glass Door Freezer	0.75 * V + 4.10

Program Year 4 July 1, 2012 to June 30, 2013

Energy Efficient Usage

Equipment Description (cubic feet)	kWhee Daily Energy Usage (kWh/day)
Solid-Door Reach-In Refrigerator	
0 <u><</u> V<15	<u><</u> 0.089V + 1.411
15 <u><</u> V < 30	<u><</u> 0.037V + 2.200
30 <u><</u> V < 50	<u><</u> 0.056V + 1.635
50 <u><</u> ∨	<u><</u> 0.060V + 1.416
Solid-Door Reach-In Freezer	
0 <u><</u> V<15	<u><</u> 0.250V + 1.250
15 <u><</u> V < 30	<u><</u> 0.400V -1.000
30 <u><</u> V < 50	<u><</u> 0.163V + 6.125
50 <u><</u> ∨	<u><</u> 0.158V + 6.333
Glass-Door Reach-In Refrigerator	
0 <u><</u> V<15	<u><</u> 0.118V + 1.382
15 <u><</u> V < 30	<u><</u> 0.140V + 1.050
30 <u><</u> V < 50	<u><</u> 0.0888V + 2.625
50 <u><</u> ∨	<u><</u> 0.110V + 1.500
Glass-Door Reach-In Freezer	
0 <u><</u> V<15	<u><</u> 0.607V + 0.893
15 <u><</u> V < 30	<u><</u> 0.733V - 1.000
30 <u><</u> V < 50	<u><</u> 0.250V + 13.500
50 <u><</u> ∨	<u><</u> 0.450V + 3.500

Operating Hours 8760 hours/year

Demand Coincidence Factor

CF = 1.0

Lifetime

12 years

Measure Costs and Incentive Levels

Incremental Measure Refrigerator and Freezer Costs

	Under-	Single Deer	Double-	Triple-
Description	Counter	Single-Door	Door	Door
Nominal Size	1 door	1 door	2 doors	3 doors
Nominal Volume Range (cubic feet)	0 <u><</u> V < 15	15 <u><</u> V < 30	30 <u><</u> V 50	50 <u><</u> V
Solid-Door Reach-In Refrigerators Incremental Cost	\$1,092.00	\$ 1,410.73	\$ 1,968.70	\$2,723.28
Solid-Door Reach-In Freezers Incremental Cost	\$ 257.60	\$ 1,363.18	\$15,556.71	\$1,968.03
Glass-Door Reach-In Refrigerators Incremental Cost	\$ 103.60	\$ 863.80	\$ 1,076.11	\$1,548.96
Glass-Door Reach-In Freezers Incremental Cost	\$ 25.48	\$ 124.04	\$ 214.20	\$ 899.30

Program Year 4 July 1, 2012 to June 30, 2013

12.7 Building Envelope Improvements

12.7.1 Window Tinting

Version Date & Revision History Draft date: March 2, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

 Basis for a Prescriptive Window Film Rebate Program (Attachment G) prepared for HECO (XENERGY Inc.) November 5, 1999

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

- Rebate increased from \$0.35 to \$1.00 per square foot
- Changed from 0.4 shading coefficient (SC) to 0.5 SC

Description:

- *Warranty* Film must have a minimum five-year manufacturer's warranty and one-year installer's warranty
- Conditioned Space Rebates shall be paid on actual square footage of glass in a conditioned space
- *Eligible Types* Windows may be clear or factory tinted, single or double pane, but must not have reflected glass. All orientations are eligible.
- Unshaded Windows significantly shaded by buildings, trees or awnings are not eligible for rebates.
- *Replacement Film* Replacement of deteriorated window film is eligible for 50% of the rebate if the customer did not receive a rebate for the existing film.

Equipment Qualifications:

Shading Coefficient < 0.5 Solar Heat Gain Coefficient (SHGC) < 0.435 SC = 0.87*SHGC

Payback Qualifications:

None

Energy and Demand Savings:

Savings	Hotel	Office	Other	Average
Energy Savings (kWh/ft2)	5.6	4.5	4.5	4.9
Demand Savings (kW/ft2)	0.0014	0.0008	0.0016	0.0013

Program Year 4 July 1, 2012 to June 30, 2013

Incentives:

Description	Unit	Incentive	Incre	emental Cost
Window Film per square feet	\$	1.00	\$	3.00

Persistence Factor

1.0

Coincidence Factor

1.0

Lifetime

10 years (DEER)

Program Year 4 July 1, 2012 to June 30, 2013

12.7.2 Cool Roof Technologies

Version Date & Revision History Draft date: Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• Evergreen TRM Review – 2/23/12

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Description

This section covers installation of "cool roof" roofing materials in commercial buildings. The cool roof is assumed to have a solar absorptance of 0.3(1) compared to a standard roof with solar absorptance of 0.8(2). Energy and demand saving are realized through reductions in the building cooling loads. The approach utilizes DOE-2.2 simulations on a series of commercial prototypical building models. Energy and demand impacts are normalized per thousand square feet of roof space.

Definition of Efficient Equipment

The efficient condition is a roof with a solar absorptance of 0.30.

Definition of Baseline Equipment

The baseline condition is a roof with a solar absorptance of 0.80

Deemed Lifetime of Efficient Equipment

The expected lifetime of the measure is 15 years (3)

Deemed Measure Cost

The full installed cost for retrofit applications is \$8,454.67 per one thousand square feet (4).

Deemed O&M Cost Adjustments

There are no expected O&M cost adjustments for this measure.

Coincidence Factor

The coincidence factor is 0.74(5). REFERENCE SECTION Calculation of Savings

Energy Savings

 $\Delta kWh = SF / 1000 * \Delta kWhkSF$

(1) Maximum value to meet Cool Roof standards under California's Title 24

(2) Itron. 2004-2005 Database for Energy Efficiency Resources (DEER) Update Study. December 2005.
 (3) 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining

Useful Life Values", California Public Utilities Commission, December 16, 2008

(4) 2005 Database for Energy-Efficiency Resources (DEER), Version 2005.2.01, "Technology and Measure Cost Data", California Public Utilities Commission, October 26, 2005

(5) Coincidence factor supplied by Duke Energy for the commercial HVAC end-use. Pending verification based on information from the utilities.

Program Year 4 July 1, 2012 to June 30, 2013

Hawaii Building Example:

 ΔkWh = 0.25 kWh / square feet

Where:

CF = The coincident peak factor, or 0.50

Demand Savings per square feet

ΔkW	= 0.0001 * 0.50
	= 0.00005 kW

Baseline Adjustment

There are no expected future code changes to affect this measure.

Deemed O&M Cost Adjustment Calculation

There are no expected O&M costs or savings associated with this measure.

Unit energy, demand, and gas savings data is based on a series of prototypical small commercial building simulation runs.

Incentive

\$0.20/Square Foot (Roof Surface Area)

Program Year 4 July 1, 2012 to June 30, 2013

12.8 Energy Star Business Equipment

12.8.1 Refrigerators w/Recycling

Measure ID: See Table 7.3

Version Date & Revision History Draft date: February 24, 2010 Effective date: July 1, 2011 End date: June 30, 2012

Referenced Documents:

- HECO DSM Docket Backup Worksheets Global Energy (07-14-06)
- Econorthwest TRM Review 6/23/10 •
- Department of Energy Refrigerator Profile Updated December 2009 •

TRM Review Actions:

- 6/23/10 Rec. # 11 Revise savings to be consistent with ENERGY STAR estimates. Adopted • with modifications on refrigerator figures based on DOE Refrigerator profile and the addition of bounty, recycle with new figures.
- 6/23/10 Rec. # 12 Split the claimed savings by appliance. Adopted.
- 6/23/10 Rec. # 14 Revise demand savings values for ENERGY STAR appliances Adopted. •
- 10/5/11 Currently Under Review.

Major Changes:

- Split between ESH appliances
- Incorporation of three refrigerator categories (new, new with turn in, and bounty (turn in only))
- All ESH 313 kWh and 0.12 kW changed to:
 - New ES Refrigerator Only
 - 105 kWh, .017 kW New ES Refrigerator with Turn-In – 822 kWh, .034 kW

Measure Description:

0

The replacement of standard Refrigerators for business locations.

Appliances must comply with:

Energy Star

Refrigerators – ENERGY STAR refrigerators utilize improvements in insulation and compressors.

Baseline Efficiencies:

Baseline energy usage based on 2009 Energy Star Information for the appliances are as follows:

	Demand Baseline (kW)	Energy Baseline (kWh)	Notes
Non ES Qualifying Refrigerator		537	19.0-21.4 Top Freezer

Program Year 4 July 1, 2012 to June 30, 2013

High Efficiency:

The high efficiency case Energy Star energy usage based on 2009 Energy Star Calculator Information and DOE Refrigerator Market Profile for the appliances is as follows:

	Demand High Efficiency (kW)	Energy High Efficiency (kWh)	Notes
ES Qualifying Refrigerator		435	19.0-21.4 Top Freezer

Energy Savings:

Energy Star Appliance Gross Savings before operational adjustments:

	Demand Savings (kW)	Energy Savings (kWh)
ES Refrigerator	0.017	105
ES Refrigerator with Turn-In	0.034	822

Energy Star Appliance Net Savings operational adjustments:

Operational Factor	Adjustment Factor
Persistence Factor (pf)	1.0
Demand Coincidence Factor (cf)	1.0

Savings Algorithms

Energy Star Refrigerator and Turn In Refrigerator - Single and Multi Family Residential Home

Opportunity		Energy Usage		
New Non-ENERGY STAR			540	Table 2
New ENERGY STAR Refrigerator		-	435	Table 2
		·	105 kWł	n/Year Table 1
#1 - Purchase of ENERGY STAR R	efrigerator		105	Table 1
#2 - Removal of Old Unit from S	ervice (off the grid)	+	717	Table 1
#1 + #2 = Purchase ES and Recyc	le old unit		822 kWł	n/Year
	Energy Usage	Ratio	Contribution	
Post-1993 Refrigerator	640	55%	354.54	Table 3
Pre-1993 Refrigerator	1,131	45%	504.46	Table 3

859 kWh/Year

Program Year 4 July 1, 2012 to June 30, 2013

Table 1

	Annual Savings			
Opportunity	Per	Unit	Aggregate U	.S. Potential
	kWh	\$	MWh	\$ million
 Increase the number of buyers that purchase ENERGY STAR qualified refrigerators. 9.3 million units were sold in 2008. 70 percent were not ENERGY STAR. 6.5 million potential units per year could be upgraded. 	105	11.64	675,928	75
 Decrease the number of units kept on the grid when new units are purchased. 8.7 million primary units were replaced in 2008. 44 percent remained in use, whether they were converted to second units, sold, or given away. 3.8 million units are candidates for retirement every year. 	717	79.53	2,746,062	305
 Decrease the number of second units. 26 percent of households had a second refrigerator in 2008. 29.6 million units are candidates for retirement. 	859	95.28	25,442,156	2,822
 4. Replace pre-1993 units with new ENERGY STAR qualified models. 19 percent of all units in use in 2008 were manufactured before 1993. 27.3 million total potential units are candidates for targeted replacement. 	730	81	19,946,440	2,212

Program Year 4 July 1, 2012 to June 30, 2013

Table 2

Energy and Cost Comparison for Upgrading to ENERGY STAR

Purchase Decision	New Non-ENERGY STAR Qualified Refrigerator	New ENERGY STAR Qualified Refrigerator
A	540 kWh	435 kWh
Annual Consumption	\$60	\$48
	_	105 kWh
Annual Savings	-	\$12
Average Lifetime	12 years	12 years
	-	1,260 kWh
Lifetime Savings	-	\$140
Price Premium	-	\$30 - \$100
Simple Payback Period	_	3-9 years

Note: Calculations based on shipment-weighted average annual energy consumption of 2008 models. An ENERGY STAR qualified model uses 20 percent less energy than a new non-qualified refrigerator of the same size and configuration.

Source: See endnote 10.

Table 3

Energy and Cost Comparison for Removing a Second Refrigerator from the Grid

	Post-1993 Unit		Pre-1993 Unit	
Fate of Unit	Remains on the Grid	Removed from the Grid	Remains on the Grid	Removed from the Grid
Annual Consumption	640 kWh	-	1,131 kWh	-
Annual Consumption	\$71	-	\$125	-
Appual Cavinga	-	640 kWh	-	1,131 kWh
Annual Savings	-	\$71	-	\$125
Average Lifetime*	6	-	6	-
Lifetime Cavings	-	3,840 kWh	-	6,788 kWh
Lifetime Savings*	-	\$426	-	\$753
Removal Cost	-	\$50 - \$100	-	\$50 - \$100
Simple Payback Period	-	1-2 years	_	<1 year

*Assumes unit has six years of functionality remaining.

Sources: See endnote 10.

Program Year 4 July 1, 2012 to June 30, 2013

Operating Hours Refrigerators = 8,760 hours per year

Loadshape TBD

Freeridership/Spillover Factors TBD

Demand Coincidence Factor NA

Persistence NA

Lifetime 14 years

Measure Costs and Incentive Levels

Residential Measure Costs and Incentive Levels

Description	Unit Incentive	Incremental Cost HECO DSM Docket 2006	Average Incremental Cost Energy Star 2009
ES Refrigerator	\$50	\$ 60.36	\$ 65
ES Refrigerator w/turn in	\$125		\$130*

*Estimated value

Component Costs and Lifetimes Used in Computing O&M Savings TBD

Reference Tables None

Program Year 4 July 1, 2012 to June 30, 2013

12.9 Energy Awareness, Measurement and Control Systems

12.9.1 Condominium Submetering Pilot

Measure ID: See Table 7.3 (TBD) Measure Code:

Version Date & Revision HistoryDraft date:March 2, 2011Effective date:July 1, 2012End date:June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 - Currently Under Review.

Major Changes:

• n/a

Description:

Equipment Qualifications:

This program is to assist master-metered condominiums and their Association of Apartment Owners (AOAO) efforts to reduce energy consumption and implement the current submetering proposal as one that will insure both equity and fairness in allocating energy costs as well as encouraging energy conservation through direct feedback of personal energy use to tenants.

The combination of billing submeters, along with education, peer group comparisons and special equipment offerings, will assist the tenant achieve significant energy conservation and efficiency.

Requirements:

- The metering system must remain in place and billing to occur for a period of at least five (5) years or a pro-rated portion of the incentive will be recovered by Hawaii Energy. Provide Hawaii Energy with energy meter data for analysis purposes.
- A joint educational and monitoring program will be undertaken with AOAO to assist in the verification of savings and development of an ongoing energy incentive offering for other condominiums in Hawaii.

Baseline

The base case is no submetering. Baseline Annual Energy Usage is the actual average usage (kWh/year) based on historical usage for past 24 months (or as appropriate) for entire condominium (master metered) divided by the number of condominium units. Baseline demand (kW) is the Average Historical Demand divided by the number of condominium units.

Building Types	Demand Baseline (kW)	Energy Baseline (kWh/year)
Condominium	1.42	7,200

Program Year 4 July 1, 2012 to June 30, 2013

High Efficiency

The high efficiency case is with submetering. It is expected there will be a 10% reduction in energy usage and 8% reduction in peak demand during (5PM - 9PM).

Building Types	Efficient Case (kW)	Efficient Case (kWh/year)
Condominium	1.30	6,480

Energy and Demand Savings:

Building Types	Gross Customer Savings (kW)	Gross Customer Savings (kWh/year)
Condominium	0.113	720

Operational Factor	Adjustment Factor
Persistence Factor (pf)	1.00
Demand Coincidence Factor (cf)	1.00

	Net	Net
	Customer	Customer
Building	Savings	Savings
Types	(kW)	(kWh/year)
Condominium	0.113	720

Program Year 4 July 1, 2012 to June 30, 2013

Example Savings Algorithm:

Submetering (Condominium)

Average Master Meter Energy Usage (kWh/month) Number of tenant Units	180,000 kWh per month <u>÷ 300</u> Units
Average Tenant Energy Usage (Example)	600 kWh per home per month
	x 12 month per year
Baseline Annual Household Energy Usage	7,200 kWh per Year
Average Master Meter Demand (kW)	425
Number of tenant Units	÷ 300
Baseline Demand (kW)	<u>1.42</u> kW
	1.72 NVV
Energy Reduction	10.0%
Actively Informed Household Energy Usage	6,480 kWh per Year
Baseline Annual Household Energy Usage	7,200 kWh per Year
Actively Informed Household Energy Usage	<u>- 6,480</u> kWh per Year
Gross Customer Level Energy Savings	720 kwh per Year
Gross Customer Level Energy Savings	720 kwh per Year
Persistance Factor	x 1.0
Net Customer Level Savings	720 kwh per Year
Submetering Energy Savings	720 kWh / Year Savings
Baseline Household Demand	1.42 kW HECO 2008 Load Study
	0.000/
Peak Demand Reduction	8.00%
Actively Informed Household Demand	1.30 kW
,	
Baseline Household Demand	1.42 kW
Actively Informed Household Demand	<u>- 1.30</u> kW
Gross Customer Demand Savings	0.113 kW
Gross Customer Demand Savings	0.113 kW
Persistance Factor	x 1.0
Coincidence Factor	x 1.0
	0.113 kW
Condominium Sub-Metering Demand Savings	0.113 kW Savings

Program Year 4 July 1, 2012 to June 30, 2013

Incentives/Incremental Cost

- \$150 per unit metered, payable to the AOAO for distribution to owners on a percentage of ownership basis to comply with condominium regulations.
- Incentive payment will be made upon billing individual tenants.
- Incentive payment cannot exceed 50% of total project cost.
- The payment of the incentive will be based on the AOAO securing the approval, installing and utilizing the submeters for billing purposes.
- There is no minimum reduction in electrical use to be required by AOAO to retain the incentive.

Description	Incentive	Incremental Cost
Condominium Submeter	\$150	\$750

Measure Life: 8 years (based on DEER. Similar technology as time-clocks and occupancy sensors)

Program Year 4 July 1, 2012 to June 30, 2013

12.9.2 Small Business Submetering

Version Date & Revision History Draft date: October 3, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Description:

Equipment Qualifications:

This program is to assist master-metered small businesses to reduce energy consumption that will insure both equity and fairness in allocating energy costs as well as encouraging energy conservation through direct feedback of personal energy use to business tenants.

The combination of billing submeters, along with education, peer group comparisons and special equipment offerings, will assist the tenant achieve significant energy conservation and efficiency.

Requirements:

- The metering system must remain in place and billing to occur for a period of at least five (5) years or a pro-rated portion of the incentive will be recovered by Hawaii Energy. Provide Hawaii Energy with energy meter data for analysis purposes.
- A joint educational and monitoring program will be undertaken with the businesses to assist in the verification of savings and development of an ongoing energy incentive offering for other condominiums in Hawaii.

Baseline

The base case is no submetering

Building Types	Demand Baseline (kW)	Energy Baseline (kWh/year)
Small Business	3.00	10,800

Program Year 4 July 1, 2012 to June 30, 2013

High Efficiency

The high efficiency case is with submetering

Building Types	Efficient Case (kW)	Efficient Case (kWh/year)
Small Business	2.76	9,720

Energy and Demand Savings:

Building Types	Gross Customer Savings (kW)	Gross Customer Savings (kWh/year)
Small Business	0.24	1,080

Operational Factor	Adjustment Factor
Persistence Factor (pf)	1.00
Demand Coincidence Factor (cf)	1.00

Building Types	Net Customer Savings (kW)	Net Customer Savings (kWh/year)
Small Business	0.24	1,080

It is expected there will be at least 10% reduction in energy usage and 8% reduction in peak demand during (5PM - 9PM), however, there is no minimum reduction in electrical use to be required to retain the incentive.

Program Year 4 July 1, 2012 to June 30, 2013

Savings Algorithm:

Small Business Submetering

Average Tenant Energy Usage			kWh per business per month (Schedule G)
Baseline Business Energy Usage	x	12 10,800	= kWh per Year
Energy Reduction		10.0%	
Actively Informed Business Energy Usage		9.720	kWh per Year
		-, -	
Baseline Business Energy Usage		10,800	kWh per Year
Actively Informed Business Energy Usage	-	9,720	_kWh per Year
Gross Customer Level Energy Savings			kwh per Year
	х		Watts per kW
	÷	8,760	Hours per Year
Average 24/7 Demand Reduction		123	Watts
Gross Customer Level Energy Savings			kwh per Year
Persistance Factor	x	1.0	
Net Customer Level Savings		1,080	kwh per Year
Submetering Energy Savings		1,080	kWh / Year Savings
Baseline Business Demand		2 00	kW
baseline busiless Demanu		5.00	KVV
Peak Demand Reduction		8.00%	
Actively Informed Business Demand		2.76	kW
Baseline Business Demand			kW
Actively Informed Business Demand	-	2.76	
Gross Customer Demand Savings		0.240	kW
Gross Customer Demand Savings		0.240) kw
Persistance Factor	х	1.00	
Coincidence Factor	x	1.00	
		0.240	
Small Business Demand Savings		0.24	I kW Savings

Program Year 4 July 1, 2012 to June 30, 2013

Incentives/Incremental Cost

- Incentive payment will be made upon billing individual tenants.
- Incentive payment cannot exceed 50% of total project cost.
- Incentive = \$150/unit

Program Year 4 July 1, 2012 to June 30, 2013

12.9.3 Vending Misers

Measure ID: See Table 7.3 (TBD) Measure Code:

Version Date & Revision History Draft date: March 2, 2011 Effective date: July 1, 2010 End date: TBD

Referenced Documents:

⁽¹⁾ USA Technologies Energy Management Product Sheets (2006). http://www.usatech.com/energy_management/energy_productsheets.php. Accessed 9/1/09.

TRM Review Actions:

• n/a

Measure Description

Controls can significantly reduce the energy consumption of vending machine lighting and refrigeration systems. Qualifying controls must power down these systems during periods of inactivity but, in the case of refrigerated machines, must always maintain a cool product that meets customer expectations. This measure applies to refrigerated beverage vending machines, non-refrigerated snack vending machines, and glass front refrigerated coolers. This measure should not be applied to ENERGY STAR® qualified vending machines, as they already have built-in controls.

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

 $\Delta kWh = (kWrated)(Hours)(SAVE)$

 $\Delta kW = \Delta kWh/Hours$

Where:

kWrated	= Rated kW of connected equipment. See Table below for default rated kW by
	connected equipment type.
Hours	= Operating hours of the connected equipment: default of 8,760 hours
SAVE	= Percent savings factor for the connected equipment. See table below for values.

Vending Machine and Cooler Controls Savings Factors(1)

Equipment Type	kW rated	SAVE (%)	ΔkW	ΔkWh
Refrigerated Beverage Vending Machines	0.40	46	0.184	1612

Baseline Efficiency

The baseline efficiency case is a standard efficiency refrigerated beverage vending machine, non-refrigerated

snack vending machine, or glass front refrigerated cooler without a control system capable of powering down lighting and refrigeration systems during periods of inactivity.

High Efficiency

The high efficiency case is a standard efficiency refrigerated beverage vending machine, non-refrigerated snack vending machine, or glass front refrigerated cooler with a control system capable of powering down lighting and refrigeration systems during periods of inactivity.

Program Year 4 July 1, 2012 to June 30, 2013

Hours

It is assumed that the connected equipment operates 24 hours per day, 7 days per week for a total annual operating hours of 8,760.

Measure Life 5 Years

Incentive \$50/unit

Hawaii Energy - Technical Reference Manual No. 2012 Program Year 4 July 1, 2012 to June 30, 2013

13 (CBEEM) Custom Business Energy Efficiency Measures

13.1 Customized Project Measures

13.1.1 Customized Project Measures

Version Date & Revision History Draft date: March 2, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

Description: The Custom project measure is offered for energy efficiency projects involving complex site-specific applications that require detailed engineering analysis and/or projects which do not qualify for incentives under any of the prescriptive rebate offering. Projects offered through the custom approach must pass a cost-effectiveness test based on project-specific costs and savings.

Measure Life	Reduction in Energy Use Incentive	Evening Peak Demand Reduction (5:00 p.m. to 9:00 p.m. weekdays)	Day Peak Demand Reduction (12:00 p.m. to 2:00 p.m. weekdays)	First Year Energy Savings (kWh)	Demand Savings (kW)
< 5 years	\$0.10 /kWh	\$125 / kW	*\$100 / kW		
> 5 years	\$0.15 /kWh	\$125 /kW	*\$100 /kW		

Program Requirements:

- Approval is required prior to the start of work on any customized project.
- Total resource benefit ratio is greater than or equal to 1.
- Incremental simple payback greater than one year or six months for LED projects.

Requirements for Non ENERGY STAR[®] LED Lamps

- Five year manufacturer warranty or three year manufacturer warranty with LM79 and LM80 (1,000 hour) tests
- UL Listed

Program Year 4 July 1, 2012 to June 30, 2013

Energy and Demand Savings:

All assumptions, data and formulas used in the calculations must be clearly documented. Standard engineering principles must be applied, and all references cited. Energy saving calculations shall also reflect the interactive effects of other simultaneous technologies to prevent the overstatement of the actual savings. Proposed base and enhanced cases must be performed by a qualified person or firm. In some cases, a professional engineer may be required to provide verification of the analysis.

Savings Algorithms

Gross energy and demand savings estimates for custom projects are calculated using engineering analysis and project-specific details. Custom analyses typically include a weather dependent load bin analysis, whole building energy model simulation, or other engineering analysis and include estimates of savings, costs, and an evaluation of the project's cost-effectiveness.

Baseline Efficiency

The baseline efficiency case assumes compliance with the efficiency requirements as mandated by the Hawaii State Energy Code or industry accepted standard practice.

High Efficiency

The high efficiency scenario is specific to the custom project and may include one or more energy efficiency measures. Energy and demand savings calculations are based on projected changes in equipment efficiencies and operating characteristics and are determined on a case-by-case basis. The project must be proven cost-effective and pass total resource benefit and have a payback greater than or equal to 1.

Persistance Factor

PF = 1 since all custom projects require verification of equipment installation.

Incentives

- Incentives are limited to 50% of incremental costs.
- Installations are subject to inspection for up to 5 years. Removal will be cause for incentive forfeiture.

Hawaii Energy - Technical Reference Manual No. 2012 Program Year 4 July 1, 2012 to June 30, 2013

14 (BESM) Business Energy Services and Maintenance

14.1 Business Direct Installation

14.1.1 Small Business Direct Lighting Retrofits

Version Date & Revision History Draft date: Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

This program provides small business owners with an economical, quick and easy switch to more energy efficient lighting. The program is designed to address the needs of small business owners and help them overcome the barriers of time, trust and technical knowledge to make lighting technology changes.

- Provide complete process to provide direct installation of lighting retrofits for small business customers.
- Participating Hawaii Energy Participating contractors will offer six month payment plans for the lighting retrofits
- Use of workforce development groups and grass roots volunteer organizations to generate leads and perform initial audits to lower cost of sales for Lighting contractors
- Quick Inventory worksheet to ID potential targeting for future mechanical measures (AC/Water heating/Appliances/Refrigeration)

Small Business Lighting Retrofit providing a "Turnkey" program consisting of audits, 100% incentivized lighting measures, installation by participating Hawaii Energy Participating contractors and 6 month financing of lighting retrofit costs of custom measures beyond the cost per kWh incentive.

A "Turnkey" program consisting of audits, 100% incentivized lighting measures, installation by participating Hawaii Energy Participating contractors.

Program Year 4 July 1, 2012 to June 30, 2013

The following lighting technology changes will be 100% incentivized under this measure:

	Measure Description		Measure Description
	Two 8 ft. T12HO 110W to Four 4 ft. T8 28W Normal BF / Reflector One 8 ft. T12HO 110W to Two 4 ft. T8 28W High BF Two 8 ft. T12HO 110W to Two 4 ft. T8 28W High BF / Reflector Two 8 ft. T12 75W to Two 4 ft. T8 28W Normal BF One 8 ft. T12 75W to Two 4 ft. T8 28W Normal BF		Two 8 ft. T12HO 110W to Four 4 ft. T8 25W Normal BF / Reflector One 8 ft. T12HO 110W to Two 4 ft. T8 25W High BF Two 8 ft. T12HO 110W to Two 4 ft. T8 25W High BF / Reflector Two 8 ft. T12 75W to Two 4 ft. T8 25W Normal BF One 8 ft. T12 75W to Two 4 ft. T8 25W Normal BF
trofits	Four 4 ft. T12 40W to Four 4 ft. T8 28W Normal BF Four 4 ft. T12 40W to Two 4 ft. T8 28W Normal BF / Reflector Three 4 ft. T12 40W to Three 4 ft. T8 28W Normal BF Three 4 ft. T12 40W to Two 4 ft. T8 28W Normal BF / Reflector Two 4 ft. T12 40W to Two 4 ft. T8 28W Normal BF One 4 ft. T12 40W to One 4 ft. T8 28W Normal BF	trofits	Four 4 ft. T12 40W to Four 4 ft. T8 25W Normal BF Four 4 ft. T12 40W to Two 4 ft. T8 25W Normal BF / Reflector Three 4 ft. T12 40W to Three 4 ft. T8 25W Normal BF Three 4 ft. T12 40W to Two 4 ft. T8 25W Normal BF / Reflector Two 4 ft. T12 40W to Two 4 ft. T8 25W Normal BF One 4 ft. T12 40W to One 4 ft. T8 25W Normal BF
28W Retrofits	Four 4 ft. T12 34W to Four 4 ft. T8 28W Normal BF Four 4 ft. T12 34W to Two 4 ft. T8 28W Normal BF / Reflector Three 4 ft. T12 34W to Three 4 ft. T8 28W Normal BF Three 4 ft. T12 34W to Two 4 ft. T8 28W Normal BF / Reflector Two 4 ft. T12 34W to Two 4 ft. T8 28W Normal BF One 4 ft. T12 34W to One 4 ft. T8 28W Normal BF	25W Retrofits	Four 4 ft. T12 34W to Four 4 ft. T8 25W Normal BF Four 4 ft. T12 34W to Two 4 ft. T8 25W Normal BF / Reflector Three 4 ft. T12 34W to Three 4 ft. T8 25W Normal BF Three 4 ft. T12 34W to Two 4 ft. T8 25W Normal BF / Reflector Two 4 ft. T12 34W to Two 4 ft. T8 25W Normal BF One 4 ft. T12 34W to One 4 ft. T8 25W Normal BF
	Four 4 ft. T8 32W to Four 4 ft. T8 28W Normal BF Four 4 ft. T8 32W to Two 4 ft. T8 28W Normal BF / Reflector Three 4 ft. T8 32W to Three 4 ft. T8 28W Normal BF Three 4 ft. T8 32W to Two 4 ft. T8 28W Normal BF / Reflector Two 4 ft. T8 32W to Two 4 ft. T8 28W Normal BF One 4 ft. T8 32W to One 4 ft. T8 28W Normal BF		Four 4 ft. T8 32W to Four 4 ft. T8 25W Normal BF Four 4 ft. T8 32W to Two 4 ft. T8 25W Normal BF / Reflector Three 4 ft. T8 32W to Three 4 ft. T8 25W Normal BF Three 4 ft. T8 32W to Two 4 ft. T8 25W Normal BF / Reflector Two 4 ft. T8 32W to Two 4 ft. T8 25W Normal BF One 4 ft. T8 32W to One 4 ft. T8 25W Normal BF
	Two 4ft. FB40 T8 to Three 2 ft. F17		6 ft. T12HO Refrigerated Case to LED - Center
LED Retrofit	PAR20 Halogen 50W to LED PAR30 Halogen 75W to LED PAR38 Halogen 75W to LED PAR38 Halogen 90W to LED MR16 Halogen 20W to LED MR16 Halogen 50W to LED	Refrigerated Case Lighting	6 ft. T12HO Refrigerated Case to LED - Single/Ends 6 ft. T12 Refrigerated Case to LED - Center 6 ft. T12 Refrigerated Case to LED - Single/Ends 6 ft. T8HO Refrigerated Case to LED - Center 6 ft. T8HO Refrigerated Case to LED - Single/Ends 5 ft. T12HO Refrigerated Case to LED - Center
9	Par20 CFL to LED Par30 CFL to LED Par38 CFL to LED	gerated	5 ft. T12HO Refrigerated Case to LED - Single/Ends 5 ft. T12 Refrigerated Case to LED - Center 5 ft. T12 Refrigerated Case to LED - Single/Ends 5 ft. T8HO Refrigerated Case to LED - Center
CFL	A19 Incandescent 100W to CFL 26W A19 Incandescent 60W to CFL 13W A19 Incandescent 75W to CFL 19W	Refri	5 ft. ToHO Refrigerated Case to LED - Center 5 ft. T8HO Refrigerated Case to LED - Single/Ends LED Refrigerated Case Light Drivers
Exit	Incandescent Exit Sign Retrofit with LED Kit Incandescent Exit Sign to New LED Fixture		

Program Requirements:

Small Business Customers receiving eclectic power under a Schedule "G" rate, or are similar to Schedule "G" but are under master-metered accounts, are eligible under this program.

Program Year 4 July 1, 2012 to June 30, 2013

Example Savings Algorithms

Business Name: Contractor Name: Auditor Name:	
Address: Address:	
Phone: Phone:	
Fax: Fax:	
Email: Email:	
Total Watts Saved Energy Savings Energy Cost Savings Hawaii Energy Participating Contractor NTE Pricing Hawaii Energy Cash Incentive Net Customer Cost Simple Payback 4 Month Monthly Payment	Monthly Savings % of Payment
1,323 W 3,324 kWh/yr. \$ 776 / yr. \$ 2,300 \$ 833 1,467 23 367	18%

					Step 2	Step 3				Step 4										
Measure Code	Existing T	echnology		New Technology	Total Units (each)	M-F Hours per Day	Sat. Hours per Day	Sun. Hours per Day b2a	(hrs/year) b3 =	Wkdays Hours on between 5 and 9 p.m. (hrs)	On-Peak Fraction (%) c2 =c/4	Total Watts Saved (Watts) d = a x o	Energy Savings (kWh/Year) e = b x (d/1000)	Energy Cost Savings (\$/year) f = e x f2	Hawaii Energy Participating Contractor NTE Pricing (\$) g = a x p	Hawaii Energy Cash Incentive (\$) h=a x q	Net Customer Cost (\$) i = a x (p-q)	Simple Payback (Months) j = (i/f) x 12	6 Month Monthly Payment (\$/month) k=i/6	Monthly Savings % of Payment (%) I = (f/12)/k
8L1-4L2	8 ft.	1 Lamp F96	4 ft.	2 Jamp F25/28 N	- 1	010	010	010	b1*b2*(365/7) 2.503		0%	46	115		0) - (i) i) × II	\$ 2.24	
8L2-4L2		2 Lamp F96	4 ft.	2 lamp F25/28 H	1				2,503		0%	57	113					11	\$ 5.17	
8L2HO-4L2R		2 Lamp F96 HO		2 lamp F25/28 N, Reflct.	1	8	8		2,503		0%	46	115					26		
		2 Lamp F96 HO		4 Jamp F25/28 N	1	8	8		2,503		0%	92	230					19		
			4 ft.	4 Jamp F25/28 N	1	8	8		2,503	-	0%	92	230					7		
			4 ft.	2 Jamp F25/28 N. Reflct.	1	8	8		2,503	-	0%	46	115					17		
		3 Jamp F40	4 ft.	3 Jamp F25/28 N. Reflct.	1	8	8		2,503		0%	69	173					11		
4L3-4L2R		3 Jamp F40	4 ft.	2 Jamp F25/28 N. Reflct.	1	8	8	s 0	2,503	-	0%	46	115					17		
4L2-4L2	4 ft.	2 Jamp F40	4 ft.	2 lamp F25/28 N	1	8	8	s 0	2,503	-	0%	46	115	\$ 27	\$ 35	\$ 27	\$ 8	4	\$ 1.33	168%
4L1-4L1	4 ft.	1 lamp F40	4 ft.	1 lamp F25/28 N	1	8	8	s 0	2,503	-	0%	23	58	\$ 13	\$ 30	\$ 14	\$ 16	14	\$ 2.67	42%
4L4-4L4	4 ft.	4 lamp F32	4 ft.	4 lamp F25/28 N	1	8	8	s 0	2,503	-	0%	92	230	\$ 54	\$ 83	\$ 34	\$ 49	11	\$ 8.17	55%
4L4-4L2	4 ft.	4 lamp F32	4 ft.	2 lamp F25/28 N	1	8	8	6 0	2,503	-	0%	46	115	\$ 27	\$ 65	\$ 53	\$ 12	5	\$ 2.00	112%
4L3-4L3	4 ft.	3 lamp F32	4 ft.	3 lamp F25/28 N	1	8	8	6 0	2,503	-	0%	69	173	\$ 40	\$ 74	\$ 26	\$ 48	14	\$ 8.00	42%
4L3-4L2	4 ft.	3 lamp F32	4 ft.	2 lamp F25/28 N	1	8	8	s 0	2,503	-	0%	46	115					18	\$ 6.67	34%
4L2-4L2	4 ft.	2 lamp F32	4 ft.	2 lamp F25/28 N	1	8	8	6 0	2,503		0%	46	115							
4L1-4L1	4 ft.	1 lamp F32	4 ft.	1 lamp F25/28 N	1	8	8	6 0	2,503	-	0%	23	58	\$ 13				23	\$ 4.33	26%
1L400-4L6	HID Pendant	1 lamp 400W	4 foot	6 lamp F25/T8 N	1	8	8	6 0	2,503	-	0%	138	345					42	\$ 47.33	14%
1L250-4L4		1 lamp 250W	4 foot	4 lamp F25/T8 N	1	8	8	6 0	2,503	-	0%	92	230					62		
1L175-4L4			4 foot	4 lamp F25/T8 N	1	8	8	G (2,503	-	0%	92	230					62		
			2 ft.	2 lamp F17 N	1	8	8	6 0	2,503	-	0%	32	80					12		
			2 ft.	2 lamp F17 L, Reflector	1	8	8	6 0	2,503	-	0%	27	68					15		
100-23	100 Watt Incan	descent	23 Watt	CFL	1	8	8	6 0	2,503	-	0%	23	58					5	\$ 1.00	
75-19	75 Watt Incand	lescent	19 Watt	CFL	1	8	8	6 0	2,503	-	0%	19	48					4	\$ 0.67	
60-13	60 Watt Incand		13 Watt	CFL	1	8	8	s 0	2,503	-	0%	13	33				\$ 2	3	2 0.33	
Exit	40W Incandece		2 Watt	LED	1	24	24	24	8,760	-	0%	2	18	\$ 4	\$ 75	\$ 38	\$ 37	109	\$ 6.17	6%
OverHeight	Cost Adder for	Fixtures above	or out of the	e reach of a 10' Ladd	0										\$ -		\$ -			
												1,323 W	3,324 kWh/yr.	\$ 776 / yr.	\$ 2,300	\$ 833	\$ 1,467	23	\$ 366.86	18%

Measure Code	e Watts		Unit Watts Saved	Part	Hawaii Energy icipating Contractor Pricing	Hawaii Energy Cash Incentive			Public Benefit Fee Investment		
	(Watt/unit)	(Watt/unit)	(Watt/unit)		(\$/unit)		(\$)		(\$/kWh)		
	m	n	o = m-n		р		q		r		
8L1-4L2	85	46	39	\$	75	Ş	62	\$	0.53		
BL2-4L2	142	57	85	\$	84	\$	53	\$	0.3		
BL2HO-4L2R	170	46	124	\$	85	\$	27	\$	0.2		
BL2HO-4L4	170	92	78	\$	138	\$	53	\$	0.2		
4L4-4L4	168	92	76	\$	83	\$	51	\$	0.2		
4L4-4L2R	168	46	122	\$	65	\$	27	\$	0.2		
4L3-4L3	126	69	57	\$	74	\$	38	\$	0.2		
4L3-4L2R	126	46	80	\$	65	\$	27	\$	0.2		
4L2-4L2	84	46	38	\$	35	\$ \$	27	\$	0.2		
4L1-4L1	42	23	19 20	\$ \$	30	ş S	14	\$ \$	0.2		
4L4-4L4 4L4-4L2	112	92	20	ş S	65	ş S	53	ş S	0.1		
4L3-4L3	84	40 69	15	\$ \$	74	\$	26	\$ \$	0.4		
4L3-4L2	84	46	38	ŝ	65	ş	20	ş	0.1		
4L2-4L2	56	40	10	ŝ	35	ŝ	27	\$	0.2		
4L1-4L1	28	23	5	ŝ	35	\$	9	\$	0.1		
1L400-4L6	475	138	337	\$	360	\$	76	\$	0.2		
1L250-4L4	300	92	208	\$		\$	51		0.2		
1L175-4L4	225	92	133	\$	330	\$	51	\$	0.2		
JBL2-2L2	84	32	52	\$	40	\$	22	\$	0.2		
JBL2-2L2R	84	27	57	\$	50	\$	30	\$	0.4		
100-23	100	23	77	\$	10	\$	4	\$	0.0		
75-19	75	19	56	\$	8	\$	4	\$	0.0		
50-13	60	13	47	\$	6	\$	4	\$	0.1		
Exit	40	2	38	\$ \$	75	\$	38	\$	2.1		

Program Year 4 July 1, 2012 to June 30, 2013

14.2 Business Design, Audits and Commissioning

14.2.1 Central Plant Optimization Competition Program

Measure ID: See Table 7.3 (TBD) Measure Code:

Version Date & Revision History Draft date: March 2, 2011 Effective date: July 1, 2011 End date: June 30, 2012

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Description:

This program is designed to improve building operations through a systematic approach of installing critical metering, performing retro-commissioning activities to identify and optimize system operations, and then measuring and sharing results.

Claimed Savings

Energy and Demand savings (100%) will be claimed upfront and 50% payment of claimed energy savings will be paid at \$0.10/kWh upon implementation (1 month after start of Operational Period).

Adjustment of Incentive Funding

- Return of Incentive Funds for Decreased Energy Savings If overfunded, customer shall return the difference between the actual and estimated claimed energy saving to the Program.
- Additional Funding for Increased Energy Savings If underfunded, payment will be made to customer (up to 100% of investment).

Program Year 4 July 1, 2012 to June 30, 2013

Process

A baseline energy usage will be determined based on both metering and engineering calculations. Post meter installation review along with spot measurements will be conducted.

Initial Meeting

Application

Preliminary Systems Review

- Consultant Price Proposal
- Consultant Perform Systems Review
 - Consultant Provide Metering and Commissioning Plan

Metering and Commissioning Plan

- Approve Metering Plan
- Approve Metering Budget
- Metering Installation
- Design/Oversight/Test Metering/Base Meter Readings 2 weeks

System Commissioning Plan

- Approve Commissioning Plan
- Investigation
- Analysis/Documentation
- Field Commissioning/Tuning
- Development of Sequence of Operations
- Recommend Operational Improvements
- Recommended System Upgrades
- Maintenance and Operations Plan
- Operational Training
- System Commissioning Budget

Final Metering and Commissioning Report & Documentation Submittal

Operational Performance Period

- Start Operation Period (after commissioning, training)
 - Estimated Performance Assessment 1 (1 month after start of Operational Period)
 - Estimated Performance Assessment 2 (6 month after start of Operational Period)
 - Estimated Performance Assessment 3 (End of Operational Period)
 - End Operational Period (1 year after start of operational period)
- Review Savings Achievement

Program Year 4 July 1, 2012 to June 30, 2013

LU Hawaii Ener

Central Plant Optimization Competition Process and Project Review Worksheet

		Customer	Incentive	Committed	Set Aside	
Deliverable	Action	Cost	Rate	Incentive	Incentive	
nitial Meeting	Scope review, Program review					
Application						
Preliminary Systems Review	Price Proposal Perform Systems Review	\$	- 50% \$	-		Payment 1
Metering and Commissioning Plan	Approve Metering Plan Metering Budget Metering Installation Design/Oversight/Test Metering/Base Meter Readings-2 Weeks	\$ \$ \$	- - - 100%		\$-	Payment 2
System Commissioning Program	Approve Commissioning Plan Investigation Analysis /Documentation Field Commissioning / Tuning Development of Sequence of Operations Recommende Operational Improvements Recommended System Upgrades Maintenance and Operations Plan Operational Training System Commissioning Budget Final Report & Documentation	\$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	50% 50% 50% 50% 50% 50% 50%		\$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	Payment 3
Operational Performance Period	Start Operational Period (after commissioning, training) Estimated Performance Assessment 1 (Imo after start of Operational Period) Estimated Performance Assessment 2 (Gmo after start of Operational Period) Estimated Performance Assessment 3 (End of Operational Period) Potential Savings per Year End Operational Period (1 - year after start of operational period) Review Savings Achievement	#REF! #REF! #REF! #REF!	50% 25% 25% 100%		Incentive \$ 0.10 Potential Saving: #REF! #REF! #REF! #REF!	savings

Program Year 4 July 1, 2012 to June 30, 2013

Incentives and Responsibilities:

Incentive	Amount	Responsibilities
Commissioning Contract	50% incentive up to \$0.20 per sq. ft.	 Preliminary Systems Review Metering Plan Development of Sequence of Operations Operational Improvements System Upgrade Improvements Maintenance and Operations Plan Operational Training Owner commitment to participate in the Optimization Competition
Metering System	100% incentive for approved metering equipment and data collection systems	 Access to performance data for five years. Owner commitment to perform operational and system upgrade recommendations with less than 2 year paybacks up to the cost of the metering incentive within two years or forfeit metering incentive
Energy Reduction	\$0.10 per kWh saved for one year	 50% upon implementation 25% for performance at sixth month 25% for performance at one year

*Total incentives not to exceed customer cost.

Program Year 4 July 1, 2012 to June 30, 2013

14.2.3 Cooling Tower Optimization

Version Date & Revision History Draft date: Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

This program combines the water and energy savings potential of cooling towers. The water treatment processes drive both water consumption and the persistence of energy savings by keeping the heat exchange processes in the chillers and in the tower itself at optimum levels. The program will work with the local water departments, water treatment companies and mechanical service contractors to drive the program.

Baseline Efficiencies: TBD

High Efficiency: TBD

Energy Savings: Energy savings will be based on a customized approach.

Savings Algorithms

Incentive = \$0.25/kWh

Program Year 4 July 1, 2012 to June 30, 2013

14.2.4 Decision Maker – Real Time Submetering

Version Date & Revision History Draft date: Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

There are individuals within business organizations who have influence over a large number of employees whose behavior within the work environment drive unnecessary energy consumption (e.g. leaving on lights, additional electronic equipment, etc.). This offer is the direct installation of a web-based electrical metering device. This metering will be monitored by the decision makers within the organization to identify usage patterns and be the basis of peer group competitions within the organization.

Baseline Efficiencies: TBD

High Efficiency: TBD

Energy Savings: TBD

Savings Algorithms

Incentive = \$12,000/group (5 group budget @ \$60,000)

Program Year 4 July 1, 2012 to June 30, 2013

14.2.5 Energy Study

Version Date & Revision History Draft date: September 20, 2011 Effective date: July 1, 2012 End date: June 30, 20123

Referenced Documents:

• n/a

Hawaii Energy

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Description: The Energy Study is an indirect impact product that offers Hawaii businesses with analysis services to identify energy saving opportunities. The goal of the energy study is to provide a method for commercial and industrial customers to learn how their business uses energy today and to identify measures that will help them save energy and reduce operating costs in the future. The focus is on a customer's core energy efficiency opportunities.

Program Requirements:

- Program approval is required prior to the start of work on the energy study
- The program reserves the right to review all materials that result from a program-supported study including, but not limited to, final reports, consultant recommendations, and metered data
- The study must be performed by a qualified person or firm. A brief summary of the consultant's qualifications should be submitted with the application. In some cases, a professional engineer may be required to provide verification of the analysis
- At any time, customers may contact program staff to discuss a project, get assistance in preparing an application, or with any program-related questions

Energy and Demand Savings:

All assumptions, data and formulas used in energy efficiency calculations must be clearly documented. Standard engineering principles must be applied, and all references cited. Energy saving calculations shall also reflect the interactive effects of other simultaneous technologies to prevent the overstatement of the actual savings.

Savings Algorithms

Gross energy and demand savings estimates for energy studies are calculated using engineering analysis and project-specific details. Energy study analyses typically include estimates of savings, costs, and an evaluation of the cost-effectiveness of potential projects/upgrades.

Program Year 4 July 1, 2012 to June 30, 2013

Energy Study

The Energy Study shall include the following information and be presented in the following format:

- 1) Executive Summary
 - a) Energy Conservation Measures (ECMs) Proposed
 - b) Summary of Baseline and Enhanced Case Assumptions
 - c) Actionable Recommendations in "loading order."
- 2) Technical Information and Analysis
 - a) Energy Consumption Analysis
 - i) Two years of billing data (weatherized and compared to some pertinent operating metric)
 - b) Description of the project
 - c) Proposed Energy Conservation Measures (ECM)
 - i) Descriptive Name
 - ii) Schematic System Drawing
 - iii) Current Peak Demand (kW), Energy Usage (kWh), Effective Full Load Run Hours
 - iv) Proposed Peak Demand (kW), Energy Usage (kWh), Effective Full Load Run Hours
 - v) % Change for above
 - vi) Estimated Installation Cost
 - vii) Project timeline
 - viii)Measure Life
 - ix) Simple Payback
 - d) Base case information
 - i) Short term/spot baseline thermal, fluid, and electrical measurements for major equipment to be changed with ECMs
 - ii) Permanent metering data (This metering will qualify for additional cost assistance)
 - iii) Sizing/Performance Reviews (Pump Curves, Cooling Bin Data etc.)
 - e) Enhanced case information
 - i) How will performance be measured in the future.
 - ii) Description of where energy savings occurs (lower run time, more efficient operations etc.)
 - f) Estimated energy and demand savings associated with your proposed project
 - i) Applicable figures and tables
 - ii) Simple payback period and/or life cycle costs
 - g) Estimated costs including design, materials, and installation
- 3) Appendix
 - a) Raw and Analyzed Data (Cooling Models, Field Data, Pictures, Metering Data etc.)
 - b) Building Plans (Mechanical, Electrical Schedules, Layouts etc.)

Incentives

Incentives are limited to 50% of the cost of the study up to \$15,000

Program Year 4 July 1, 2012 to June 30, 2013

14.2.6 Design Assistance

Measure ID: Measure Code:

Version Date & Revision History Draft date: September 20, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• 12/22/11 – Program requirement changed to require project be in planning or initial design phase.

Description: Design Assistance is available to building owners and their design teams to encourage the implementation of energy efficient building systems. Considering energy efficiency during the initial phases of planning and design greatly increase the feasibility of implementation. Incentives for energy efficiency are project-specific and offered as upfront assistance for additional costs incurred during the design phase. The long-term benefits include energy use reduction for the state of Hawaii and a reduction in operating costs, equipment lifecycle improvement for building owners, and improved comfort for building users.

Program Requirements:

- Application with written pre-approval from Hawaii Energy
- Project in planning or initial design phase
- Total resource benefit ratio greater than or equal to 1

Energy and Demand Savings:

A base case and enhanced case model must be produced with a clear comparison. All assumptions, data, and formulas used in energy efficiency calculations must be clearly documented. Standard engineering principles must be applied, and all references cited. Energy saving calculations shall also reflect the interactive effects of other simultaneous technologies to prevent the overstatement of actual savings. Proposed base and enhanced cases must be performed by a qualified person or firm. In some cases, a professional engineer may be required to provide verification of the analysis.

Savings Algorithms

Gross energy and demand savings estimates for design assistance are calculated using engineering analysis and project-specific details. Custom analyses typically include a weather dependent load bin analysis, whole building energy model simulation, or other engineering analysis and include estimates of savings, costs, and an evaluation of the project's cost-effectiveness.

Baseline Efficiency

The baseline efficiency case assumes compliance with the efficiency requirements as mandated by the Hawaii State Energy Code or industry accepted standard practice.

Program Year 4 July 1, 2012 to June 30, 2013

High Efficiency

The high efficiency scenario is specific to each project and may include one or more energy efficiency measures. Energy and demand savings calculations are based on comparing a base case analysis and enhanced cased analysis on equipment efficiencies and operating characteristics and are determined on a case-by-case basis. The energy efficiency measures must be proven cost-effective, pass total resource benefit, and have a payback greater than or equal to 1.

Persistence Factor

PF = 1 since all custom projects require verification of equipment installation.

Incentives

- Incentive applications are processed on a first-come, first-serve basis
- Incentives are limited to a maximum of \$15,000

Program Year 4 July 1, 2012 to June 30, 2013

14.2.7 Energy Project Catalyst

Version Date & Revision History Draft date: Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

The objective of the catalyst program is to accelerate stalled high impact energy efficiency projects from an idea to reality as follows:

• Full Cost Incentives - Provide up to 30% cost incentive to proposals that fulfill program needs

• Commitment to Implement - Recipients must commit to implementing all projects with less than a 1 year payback including incentives.

Desired Project Profiles

o High potential for energy savings (>30% reduction in consumption).

o Commitment and high probability of owner taking action on Site Audit / Commissioning / Energy Study report

o Typical site that can be repeated, such as chain convenience stores

o Sites with Energy Usage Density over 2.5 kWh/Sq. ft./month

o Site with Peak Demand Density over 6.0 kW/ Sq. ft.

o Control System Recommissioning - Sequence of operation documentation, review, testing. o Demonstrate usefulness of the addition of critical system efficiency metering such as total central plant kW/ton.

Baseline Efficiencies: TBD

High Efficiency: TBD

Energy Savings:

Energy savings will be based on a customized approach.

Savings Algorithms

Incentive = \$0.40/kWh

Hawaii Energy - Technical Reference Manual No. 2012 Program Year 4 July 1, 2012 to June 30, 2013

15 (BHTR) Business Hard to Reach

15.1 Energy Efficiency Equipment Grants

15.1.1 SBDI - Demand Control Kitchen Ventilation (DCKV)

Version Date & Revision History Draft date: Effective date: July 1, 2013 End date: June 30, 2014

Referenced Documents:

 Detailed Energy Savings Report, Melink Corporation, http://www.melinkcorp.com/Intellihood/Energy_Analysis.pdf

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

Kitchen ventilation with DCKV hood exhaust. Demand ventilation uses temperature and/or smoke sensing to adjust ventilation rates. This saves energy comparing with the traditional 100% on/off kitchen ventilation system.

Baseline Efficiencies:

Kitchen ventilation without DCKV. Usage per HP:

Basecase = (HP x .746 KW/HP x Hours per Year)/efficiency

Basecase fan motor usage per HP (kWh/year)	4827
Basecase fan motor demand (kW)	0.83

High Efficiency:

Usage per HP:

Enhanced case fan motor usage per HP (kWh/year)	2194
Enhanced case fan motor demand (kW)	0.38

Energy Savings:

The demand control kitchen ventilation savings were determined using the method described in the Melink Detailed Energy Savings Report.

Program Year 4 July 1, 2012 to June 30, 2013

Energy Savings from fan motor per HP (kWh/year)	2633
Demand Savings from fan motor per HP (kW)	0.45

Savings Algorithms

% Rated	% Run	Time	Output	System	Input	
RPM	Time	HRS/YR	KW/HP	Efficiency	KW/HP	KWH/HP/YR
Н	l.	J=GXI	К	L	M=K/L	N=JXM
100	5%	291.2	0.746	0.9	0.829	241
90	20%	1164.8	0.544	0.9	0.604	704
80	25%	1456	0.382	0.9	0.424	618
70	25%	1456	0.256	0.9	0.284	414
60	15%	873.6	0.161	0.9	0.179	156
50	10%	582.4	0.093	0.9	0.103	60
40	0%	0	0.048	0.9	0.053	0
30	0%	0	0.02	0.9	0.022	0
20	0%	0	0.015	0.9	0.017	0
10	0%	0	0.01	0.9	0.011	0
Total kWh	/HP/YR					2194

Basecase = (HP x .746 KW/HP x Hours per Year)/efficiency

Basecase fan motor usage per HP (kWh/year)	4827
Basecase fan motor demand (kW)	0.83

Enhanced case fan motor usage per HP (kWh/year)	2194
Enhanced case fan motor demand (kW)	0.38

Energy Savings from fan motor per HP (kWh/year)	2633
Demand Savings from fan motor per HP (kW)	0.45

Program Year 4 July 1, 2012 to June 30, 2013

Operating Schedule

- 16 HR/DAY
- 7 DAY/WK
- 52 WK/YR

5824

Demand Coincidence Factor TBD

Persistence TBD

Lifetime 15 Years (Hawaii Energy assumption)

Measure Costs and Incentive Levels

Measure Cost: \$1,200 - \$1,700 per HP based on business vertical and site complications (provided my Melink)

Program Year 4 July 1, 2012 to June 30, 2013

15.1.2 Small Business Direct Installation – Restaurant Lighting

Version Date & Revision History Draft date: March 2, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

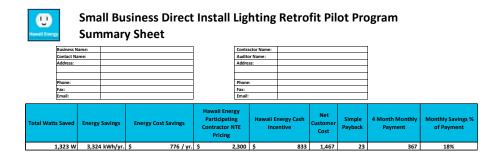
Description: This program provides small business owners with an economical, quick and easy switch to more energy efficient lighting. The program is designed to address the needs of small business owners and help them overcome the barriers of time, trust and technical knowledge to make lighting technology changes.

- Provide complete process to provide direct installation of lighting retrofits for small business customers.
- Participating Hawaii Energy Participating contractors will offer six month payment plans for the lighting retrofits
- Use of workforce development groups and grass roots volunteer organizations to generate leads and perform initial audits to lower cost of sales for Lighting contractors
- Quick Inventory worksheet to ID potential targeting for future mechanical measures (AC/Water heating/Appliances/Refrigeration)

Small Business Lighting Retrofit providing a "Turnkey" program consisting of audits, 100% incentivized lighting measures, installation by participating Hawaii Energy Participating contractors and 6 month financing of lighting retrofit costs of custom measures beyond the cost per kWh incentive.

A "Turnkey" program consisting of audits, 100% incentivized lighting measures, installation by participating Hawaii Energy Participating contractors.

Program Year 4 July 1, 2012 to June 30, 2013


The following lighting technology changes will be 100% incentivized under this measure:

	Measure Description		Measure Description
	Two 8 ft. T12HO 110W to Four 4 ft. T8 28W Normal BF / Reflector One 8 ft. T12HO 110W to Two 4 ft. T8 28W High BF Two 8 ft. T12HO 110W to Two 4 ft. T8 28W High BF / Reflector Two 8 ft. T12 75W to Two 4 ft. T8 28W Normal BF One 8 ft. T12 75W to Two 4 ft. T8 28W Normal BF		Two 8 ft. T12HO 110W to Four 4 ft. T8 25W Normal BF / Reflector One 8 ft. T12HO 110W to Two 4 ft. T8 25W High BF Two 8 ft. T12HO 110W to Two 4 ft. T8 25W High BF / Reflector Two 8 ft. T12 75W to Two 4 ft. T8 25W Normal BF One 8 ft. T12 75W to Two 4 ft. T8 25W Normal BF
28W Retrofits	Four 4 ft. T12 40W to Four 4 ft. T8 28W Normal BF Four 4 ft. T12 40W to Two 4 ft. T8 28W Normal BF / Reflector Three 4 ft. T12 40W to Twoe 4 ft. T8 28W Normal BF Three 4 ft. T12 40W to Two 4 ft. T8 28W Normal BF One 4 ft. T12 40W to Two 4 ft. T8 28W Normal BF One 4 ft. T12 40W to One 4 ft. T8 28W Normal BF Four 4 ft. T12 34W to Four 4 ft. T8 28W Normal BF Four 4 ft. T12 34W to Two 4 ft. T8 28W Normal BF Four 4 ft. T12 34W to Two 4 ft. T8 28W Normal BF Three 4 ft. T12 34W to Two 4 ft. T8 28W Normal BF Three 4 ft. T12 34W to Two 4 ft. T8 28W Normal BF Three 4 ft. T12 34W to Two 4 ft. T8 28W Normal BF One 4 ft. T12 34W to Two 4 ft. T8 28W Normal BF One 4 ft. T12 34W to Two 4 ft. T8 28W Normal BF	25W Retrofits	Four 4 ft. T12 40W to Four 4 ft. T8 25W Normal BF Four 4 ft. T12 40W to Two 4 ft. T8 25W Normal BF / Reflector Three 4 ft. T12 40W to Two 4 ft. T8 25W Normal BF Three 4 ft. T12 40W to Two 4 ft. T8 25W Normal BF One 4 ft. T12 40W to Two 4 ft. T8 25W Normal BF One 4 ft. T12 40W to One 4 ft. T8 25W Normal BF Four 4 ft. T12 34W to Four 4 ft. T8 25W Normal BF Four 4 ft. T12 34W to Two 4 ft. T8 25W Normal BF Four 4 ft. T12 34W to Two 4 ft. T8 25W Normal BF Four 4 ft. T12 34W to Two 4 ft. T8 25W Normal BF Four 4 ft. T12 34W to Two 4 ft. T8 25W Normal BF Three 4 ft. T12 34W to Two 4 ft. T8 25W Normal BF Three 4 ft. T12 34W to Two 4 ft. T8 25W Normal BF One 4 ft. T12 34W to Two 4 ft. T8 25W Normal BF
	Four 4 ft. T8 32W to Four 4 ft. T8 28W Normal BF Four 4 ft. T8 32W to Two 4 ft. T8 28W Normal BF / Reflector Three 4 ft. T8 32W to Three 4 ft. T8 28W Normal BF Three 4 ft. T8 32W to Two 4 ft. T8 28W Normal BF / Reflector Two 4 ft. T8 32W to Two 4 ft. T8 28W Normal BF One 4 ft. T8 32W to One 4 ft. T8 28W Normal BF		Four 4 ft. T8 32W to Four 4 ft. T8 25W Normal BF Four 4 ft. T8 32W to Two 4 ft. T8 25W Normal BF / Reflector Three 4 ft. T8 32W to Three 4 ft. T8 25W Normal BF Three 4 ft. T8 32W to Two 4 ft. T8 25W Normal BF / Reflector Two 4 ft. T8 32W to Two 4 ft. T8 25W Normal BF One 4 ft. T8 32W to One 4 ft. T8 25W Normal BF
	Two 4ft. FB40 T8 to Three 2 ft. F17		6 ft. T12HO Refrigerated Case to LED - Center
LED Retrofit	PAR20 Halogen 50W to LED PAR30 Halogen 75W to LED PAR38 Halogen 75W to LED PAR38 Halogen 90W to LED MR16 Halogen 20W to LED MR16 Halogen 50W to LED Par20 CFL to LED Par38 CFL to LED Par38 CFL to LED	Refrigerated Case Lighting	6 ft. T12HO Refrigerated Case to LED - Single/Ends 6 ft. T12 Refrigerated Case to LED - Center 6 ft. T12 Refrigerated Case to LED - Single/Ends 6 ft. T8HO Refrigerated Case to LED - Center 6 ft. T8HO Refrigerated Case to LED - Single/Ends 5 ft. T12HO Refrigerated Case to LED - Center 5 ft. T12HO Refrigerated Case to LED - Single/Ends 5 ft. T12 Refrigerated Case to LED - Single/Ends 5 ft. T12 Refrigerated Case to LED - Single/Ends 5 ft. T12 Refrigerated Case to LED - Single/Ends 5 ft. T8HO Refrigerated Case to LED - Single/Ends 5 ft. T8HO Refrigerated Case to LED - Single/Ends 5 ft. T8HO Refrigerated Case to LED - Single/Ends
CFL	A19 Incandescent 100W to CFL 26W A19 Incandescent 60W to CFL 13W A19 Incandescent 75W to CFL 19W	Re	5 ft. T8HO Refrigerated Case to LED - Single/Ends LED Refrigerated Case Light Drivers
Exit	Incandescent Exit Sign Retrofit with LED Kit Incandescent Exit Sign to New LED Fixture		

Program Year 4 July 1, 2012 to June 30, 2013

Example Savings Algorithms

					Step 2	Step 3			1	Step 4	1									
Measure Code	Existing	Technology		New Technology	Total Units	M-F Hours per Day	Sat. Hours per Day	Sun. Hours per Day		Wkdays Hours on between 5 and 9 p.m.	On-Peak Fraction	Total Watts Saved	Energy Savings	Energy Cost Savings	Hawaii Energy Participating Contractor NTE Pricing	Hawaii Energy Cash Incentive	Net Customer Cost	Simple Payback	6 Month Monthly Payment	Monthly Savings % of Payment
					(each)			1.0	(hrs/year) b3 -	(hrs)	(%) c2 =c / 4	(Watts)	(kWh/Year)	(\$/year) f = e x f2	(\$)	(\$)	(\$)	(Months) i = (i/f) x 12	(\$/month) k = i /6	(%)
					а	b1a	b1b	b2a	b1*b2*(365/7)	c	1.1.1	d=axo	e = b x (d/1000)		g=axp	h=axq	i = a x (p-q)	2.007		I = (f/12)/k
8L1-4L2	8 ft.	1 Lamp F96	4 ft.	2 lamp F25/28 N	1	8	3 8	(2,503	-	0%	46	115					6		100%
8L2-4L2	8 ft.	2 Lamp F96	4 ft.	2 lamp F25/28 H	1	8	3 8	(2,503	-	0%	57	143	\$ 33			\$ 31	11		
8L2HO-4L2R	8 ft.	2 Lamp F96 HO		2 lamp F25/28 N, Reflct.	1	8	3 8	(2,503	-	0%	46	115					26		
8L2HO-4L4	8 ft.	2 Lamp F96 HO	4 ft.	4 lamp F25/28 N	1	8	8 8	(2,503	-	0%	92	230					19		
4L4-4L4	4 ft.	4 Lamp F40	4 ft.	4 lamp F25/28 N	1	8	8 8		2,503	-	0%	92	230					7		
4L4-4L2R	4 ft.	4 lamp F40	4 ft.	2 lamp F25/28 N, Reflct.	1	8	8 8		2,503	-	0%	46	115					17		
4L3-4L3	4 ft.	3 lamp F40	4 ft.	3 lamp F25/28 N, Reflct.	1	8	8 8		2,503	-	0%	69	173					11		
4L3-4L2R	4 ft.	3 lamp F40	4 ft.	2 lamp F25/28 N, Reflct.	1	8	8 8		2,503	-	0%	46	115					17		
4L2-4L2	4 ft.	2 lamp F40	4 ft.	2 lamp F25/28 N	1	. 8	8 8	(2,503	-	0%	46	115					4		
4L1-4L1	4 ft.	1 lamp F40	4 ft.	1 lamp F25/28 N	1	8	3 8	(2,503	-	0%	23	58					14		
4L4-4L4	4 ft.	4 lamp F32	4 ft.	4 lamp F25/28 N	1	8	8 8	(2,503	-	0%	92	230					11		
4L4-4L2	4 ft.	4 lamp F32	4 ft.	2 lamp F25/28 N	1	8	8 8	(2,503	-	0%	46	115					5		
4L3-4L3	4 ft.	3 lamp F32	4 ft.	3 lamp F25/28 N	1	8	8 8	(2,503	-	0%	69	173					14		
4L3-4L2	4 ft.	3 lamp F32	4 ft.	2 lamp F25/28 N	1	8	8 8	(2,503	-	0%	46	115					18		
4L2-4L2	4 ft.	2 lamp F32	4 ft.	2 lamp F25/28 N	1	8	8 8	(2,503	-	0%	46	115					4		
4L1-4L1	4 ft.	1 lamp F32	4 ft.	1 lamp F25/28 N	1	8	8 8	(2,503	-	0%	23	58				\$ 26	23		
1L400-4L6	HID Pendant	1 lamp 400W	4 foot	6 lamp F25/T8 N	1	8	8 8	(2,503	-	0%	138	345					42		
1L250-4L4	HID Pendant	1 lamp 250W	4 foot	4 lamp F25/T8 N	1	8	8 8	(2,503	-	0%	92	230					62		
1L175-4L4	HID Pendant	1 lamp 175W	4 foot	4 lamp F25/T8 N	1	8	8 8	(2,503	-	0%	92	230					62		
UBL2-2L2	4 ft. U-Bend	2 lamp FB40	2 ft.	2 lamp F17 N	1	8	8 8	(2,503	-	0%	32	80					12		
UBL2-2L2R	4 ft. U-Bend	2 lamp FB40	2 ft.	2 lamp F17 L, Reflector	1	8	8 8	(2,503	-	0%	27	68	\$ 16				15		
100-23	100 Watt Incar		23 Watt	CFL	1	8	8 8	(2,503	-	0%	23	58				\$ 6	5		
75-19	75 Watt Incan	descent	19 Watt	CFL	1	8	8 8		2,503	-	0%	19	48				\$ 4	4		
60-13	60 Watt Incan	descent	13 Watt	CFL	1	8	8 8		2,503	-	0%	13	33					3		
Exit	40W Incanded		2 Watt	LED	1	24	24	24	8,760	-	0%	2	18	\$ 4	\$ 75	\$ 38	\$ 37	109	\$ 6.17	6%
OverHeight	Cost Adder fo	r Fixtures above	or out of th	ne reach of a 10' Ladd	0										\$ -		ş -			
												1.323 W	3.324 kWh/yr.	\$ 776 / yr.	\$ 2,300	\$ 833	\$ 1.467	23	\$ 366.86	18%

Measure Code	Existing per Unit Watts	Unit New Watts	Unit Watts Saved	Hawaii Energy Participating Contractor Pricing			awaii Energy Cash Incentive	Public Benefit Fee Investment			
	(Watt/unit)	(Watt/unit)	(Watt/unit)		(\$/unit)	(\$)			(\$/kWh)		
	m	n	o = m-n		р		q		r		
8L1-4L2	85	46	39	\$	75	\$	62	\$	0.53		
8L2-4L2	142	57	85	\$	84	\$	53		0.37		
8L2HO-4L2R	170	46	124	\$		\$	27	\$	0.23		
8L2HO-4L4	170	92	78	\$	138	\$	53	\$	0.23		
4L4-4L4	168	92	76	\$	83	\$	51	\$	0.22		
4L4-4L2R	168	46	122	\$	65	\$	27	\$	0.23		
4L3-4L3	126	69	57	\$	74	\$	38	\$	0.22		
4L3-4L2R	126	46	80	\$	65	\$	27	\$	0.23		
4L2-4L2	84	46	38	\$	35	\$	27	\$	0.23		
4L1-4L1	42	23	19	\$	30	\$	14	\$	0.24		
4L4-4L4	112	92	20	\$	83	\$	34	\$	0.15		
4L4-4L2	112	46	66	\$	65	\$	53	\$	0.46		
4L3-4L3	84	69	15	\$	74	\$	26	\$	0.15		
4L3-4L2	84	46	38	\$	65	\$	25	\$	0.22		
4L2-4L2	56	46	10	\$	35	\$	27	\$	0.23		
4L1-4L1	28	23	5	\$	35	\$	9	\$	0.16		
1L400-4L6	475	138	337	\$	360	\$	76	\$	0.22		
1L250-4L4	300	92	208	ş	330	Ş	51		0.22		
1L175-4L4	225	92	133	\$	330	\$	51	\$	0.22		
UBL2-2L2	84	32	52	\$	40	\$	22	\$	0.27		
UBL2-2L2R	84	27	57	\$	50	\$	30	\$	0.44		
100-23	100	23	77	\$	10	\$	4	\$	0.07		
75-19	75	19	56	\$	8	\$	4	\$	0.08		
60-13	60	13	47	\$	6	\$	4	\$	0.12		
Exit	40	2	38	\$	75	\$	38	\$	2.17		
OverHeight				\$	8						

Program Year 4 July 1, 2012 to June 30, 2013

15.2 Landlord, Tenant, AOAO Measures

15.2.1 Energy Hero Landlord

Version Date & Revision History Draft date: Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

• n/a

TRM Review Actions:

• 10/5/11 – Currently Under Review.

Major Changes:

• n/a

Measure Description:

The landlord/tenant relationship provides challenges to making energy efficiency capital investments in properties and operations such as air conditioning and lighting upgrades.

The tenant energy usage can be accounted for by:

- 1. Paying a flat rate per square foot based on a lease agreement
- 2. Costs Incorporated in CAM
- 3. Third-Party submetered
- 4. Separate Utility submeter

This program will be targeted to provide landlords of small business schedule "G" customers with comprehensive audit, RFP and other support for energy saving projects that will drive down the energy cost of their tenants.

The program will work with local lenders to provide project financing support in conjunction with the program.

Baseline Efficiencies: TBD

High Efficiency: TBD

Energy Savings:

Energy savings project may:

- • not have a direct financial incentive for either party
- have simple payback beyond lease term

Savings Algorithms

Incentive = \$0.30/kWh Target goal = 50,000 kWh

Program Year 4 July 1, 2012 to June 30, 2013

16 Addendum

16.1 Residential

16.2 Commercial

16.2.1 LED Product Customized Process

Measure ID: See Table 7.3 (TBD) Measure Code: LED - Custom

Version Date & Revision History Draft date: February 24, 2011 Effective date: July 1, 2012 End date: June 30, 2013

Referenced Documents:

- Illuminating Engineers Society (IES) LM79 /LM80
- ENERGY STAR LED Website http://www.energystar.gov/index.cfm?c=ssl.pr_why_es_com

TRM Review Actions:

• 10/5/11 - Currently Under Review.

Major Changes:

• n/a

Description: Light Emitting Diodes (LED) are a lighting technology that utilizes solid-state technology to produce light, opposed to fluorescent or incandescent lighting sources. In general, LED technology will provide energy levels 15% of a comparable incandescent lamp (15W to a 100W equivalent). LED lighting projects (Fixtures and Lamps) are handled under a customized incentive basis.

Equipment Qualifications: The program has developed minimum qualifications as a measure to protect the

consumers who are purchasing LED products and insure energy savings potential and persistence.

- *Power and Photometric Measurements:* IES LM79 testing performed and results submitted and understood by the customer. Provides color temperature and power input vs. light output data.
- *Lumen Maintenance:* IES LM80 testing performed and results submitted and understood by the customer. Provides % lumen maintenance over operating hours. (If not available at time of project than product requires a 5 year warranty)
- Safety: UL listed products. UL number provided with application.
- Warranty Protection: Minimum 3 year warranty with clear description of how warranty is executed.

or

- Energy Star Listing (http://www.energystar.gov/index.cfm?fuseaction=iledl.display_products_html) and for all projects
- *Program Persistence Requirement:* Acknowledge that the lamps must be in place for a period of 5

years. If replaced with higher usage technologies the rebate will be required to be refunded.

Program Year 4 July 1, 2012 to June 30, 2013

Purchaser Due Diligence: Customers are informed to utilize third-party education such as the US • DOE

Calipers reports (http://www1.eere.energy.gov/buildings/ssl/caliper.html)

Payback Qualifications: For LED products the payback requirements are allowed to be six months or greater.

This is 6 months lower than the standard customized payback requirement of 1 year or greater. The TRB/TRC must be greater than 1.

Energy and Demand Savings: A simple worksheet is utilized to compare pre and post lighting configurations. The existing lamp counts, wattage (with ballasts as appropriate) and operating hours are used to determine the existing "base case" energy usage. The "enhanced case" is then determined using the same information for the proposed LED technology.

A review is performed to insure LED wattages are in the expected range for the equivalent light output of the existing technology.

Project	Customer Name
Application Number:	2CBEEM111111
Date:	12/16/2010
Techology Type:	F32 T8 to LED
Input by:	Kimo Kilowatt

Existing / Base

			Lamps			M - F Hours	Sat. Hours	Sun.	Annual	Peak	Peak	Total	Annual
	Fixture	Fixture	Per	Lamp	Total	of	of	Hours of	Hours of	Demand	Demand	Demand	Energy
Location	Туре	Qty	Fixture	Wattage	Wattage	Operation	Operation	Operation	Operation	Hours	kW	Max kW	kWh/Year
Campus Upper Building	T8 F32	1	190	29	5,510	12	4	-	3,337	2.0	2.8	5.5	18,388
					-				-		-	-	-
					-				-		-		-
									-				-
	-				Total	834	2.0	2.8	5.5	18,388			

Notes:

Retrofit / Enhanced

			Lamps			M - F Hours	Sat. Hours	Sun.	Annual	Peak	Peak	Total	Annual
	Fixture	Fixture	Per	Lamp	Total	of	of	Hours of	Hours of	Demand	Demand	Demand	Energy
Location	Туре	Qty	Fixture	Wattage	Wattage	Operation	Operation	Operation	Operation	Hours	kW	Max kW	kWh/Year
Campus Upper Building	LED	1	190	14	2,660	12	4	0	3,337	2	1	2.7	8,877
									-				
								Total	1,669	2.0	1.3	2.7	8,877
Notes:										Reduction	Percentage	-52%	-52%

Notes:

Project Summary

Average Energy Savings Per Year	9510.86 kWh/Year				
Demand Savings	1.43 kW				

Cost Breakdown	
Material Cost	\$7,990